BROWSE

Related Scientist

nanomat's photo.

nanomat
나노입자연구단
more info

ITEM VIEW & DOWNLOAD

Mesenchymal stem cell-derived magnetic extracellular nanovesicles for targeting and treatment of ischemic stroke

Cited 0 time in webofscience Cited 0 time in scopus
494 Viewed 0 Downloaded
Title
Mesenchymal stem cell-derived magnetic extracellular nanovesicles for targeting and treatment of ischemic stroke
Author(s)
Kim, HY; Kim, TJ; Kang, L; Kim, YJ; Kang, MK; Jonghoon Kim; Ryu, JH; Taeghwan Hyeon; Yoon, BW; Ko, SB; Kim, BS
Publication Date
2020-06
Journal
BIOMATERIALS, v.243, pp.119942
Publisher
ELSEVIER SCI LTD
Abstract
© 2020 Elsevier Ltd. All rights reserved. Exosomes and extracellular nanovesicles (NV) derived from mesenchymal stem cells (MSC) may be used for the treatment of ischemic stroke owing to their multifaceted therapeutic benefits that include the induction of angiogenesis, anti-apoptosis, and anti-inflammation. However, the most serious drawback of using exosomes and NV for ischemic stroke is the poor targeting on the ischemic lesion of brain after systemic administration, thereby yielding a poor therapeutic outcome. In this study, we show that magnetic NV (MNV) derived from iron oxide nanoparticles (IONP)-harboring MSC can drastically improve the ischemic-lesion targeting and the therapeutic outcome. Because IONP stimulated expressions of therapeutic growth factors in the MSC, MNV contained greater amounts of those therapeutic molecules compared to NV derived from naive MSC. Following the systemic injection of MNV into transient middle-cerebral-artery-occlusion (MCAO)-induced rats, the magnetic navigation increased the MNV localization to the ischemic lesion by 5.1 times. The MNV injection and subsequent magnetic navigation promoted the anti-inflammatory response, angiogenesis, and anti-apoptosis in the ischemic brain lesion, thereby yielding a considerably decreased infarction volume and improved motor function. Overall, the proposed MNV approach may overcome the major drawback of the conventional MSC-exosome therapy or NV therapy for the treatment of ischemic stroke
URI
https://pr.ibs.re.kr/handle/8788114/8761
DOI
10.1016/j.biomaterials.2020.119942
ISSN
0142-9612
Appears in Collections:
Center for Nanoparticle Research(나노입자 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse