Electron emission can be utilised to measure the work function of the surface. However, the number of significant digits in the values obtained through thermionic-, field- and photo-emission techniques is typically just two or three. Here, we show that the number can go up to five when angle-resolved photoemission spectroscopy (ARPES) is applied. This owes to the capability of ARPES to detect the slowest photoelectrons that are directed only along the surface normal. By using a laser-based source, we optimised our setup for the slow photoelectrons and resolved the slowest-end cutoff of Au(111) with the sharpness not deteriorated by the bandwidth of light nor by Fermi-Dirac distribution. The work function was leveled within +/- 0.4 meV at least from 30 to 90 K and the surface aging was discerned as a meV shift of the work function. Our study opens the investigations into the fifth significant digit of the work function. The work function is a fundamental quantity applied to many aspects of physics and describes the minimum energy required to remove an electron from the surface of a metal and eject it into the vacuum. Here, the authors demonstrate a method to determine the work function to five significant figures, a higher order of magnitude than previously reported