BROWSE

Related Scientist

nanomat's photo.

nanomat
나노입자연구단
more info

ITEM VIEW & DOWNLOAD

Nanotopography-based engineering of retroviral DNA integration patterns

Cited 2 time in webofscience Cited 2 time in scopus
693 Viewed 165 Downloaded
Title
Nanotopography-based engineering of retroviral DNA integration patterns
Author(s)
Jang Y.-H.; Park Y.-S.; Nam J.-S.; Yang Y.; Lee J.-E.; Lee K.-H.; Minho Kang; Chialastri A.; Noh H.; Jungwon Park; Lee J.S.; Lim K.-I.
Publication Date
2019-03
Journal
NANOSCALE, v.11, no.12, pp.5693 - 5704
Publisher
ROYAL SOC CHEMISTRY
Abstract
Controlling the interactions between cells and viruses is critical for treating infected patients, preventing viral infections, and improving virus-based therapeutics. Chemical methods using small molecules and biological methods using proteins and nucleic acids are employed for achieving this control, albeit with limitations. We found, for the first time, that retroviral DNA integration patterns in the human genome, the result of complicated interactions between cells and viruses, can be engineered by adapting cells to the defined nanotopography of silica bead monolayers. Compared with cells on a flat glass surface, cells on beads with the highest curvature harbored retroviral DNAs at genomic sites near transcriptional start sites and CpG islands during infections at more than 50% higher frequencies. Furthermore, cells on the same type of bead layers contained retroviral DNAs in the genomic regions near cis-regulatory elements at frequencies that were 2.6-fold higher than that of cells on flat glass surfaces. Systems-level genetic network analysis showed that for cells on nanobeads with the highest curvature, the genes that would be affected by cis-regulatory elements near the retroviral integration sites perform biological functions related to chromatin structure and antiviral activities. Our unexpected observations suggest that novel engineering approaches based on materials with specific nanotopography can improve control over viral events. © The Royal Society of Chemistry
URI
https://pr.ibs.re.kr/handle/8788114/6938
DOI
10.1039/c8nr07029f
ISSN
2040-3364
Appears in Collections:
Center for Nanoparticle Research(나노입자 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
Nanotopography-based engineering of retroviral DNA integration patterns.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse