BROWSE

Related Scientist

nanomat's photo.

nanomat
나노입자연구단
more info

ITEM VIEW & DOWNLOAD

First-Principles Investigations on Sodium Superionic Conductor Na11Sn2PS12

Cited 3 time in webofscience Cited 6 time in scopus
670 Viewed 586 Downloaded
Title
First-Principles Investigations on Sodium Superionic Conductor Na11Sn2PS12
Author(s)
Oh K.; Chang D.; Park I.; Yoon K.; Kisuk Kang
Publication Date
2019-08
Journal
CHEMISTRY OF MATERIALS, v.31, no.16, pp.6066 - 6075
Publisher
AMER CHEMICAL SOC
Abstract
© 2019 American Chemical Society.Sodium superionic conductors are key components of solid-state sodium ion batteries, which are regarded as promising alternative energy storage options for large-scale application. Recently, a new crystalline sodium superionic conductor Na11Sn2PS12 was reported with a remarkably high ionic conductivity over 1 mS/cm at room temperature. Herein, we report the comprehensive first-principles investigations on this new sodium superionic conductor. Our ab initio molecular dynamics simulations confirm the intrinsically fast and isotropic diffusion of sodium ions in Na11Sn2PS12 involving all the sodium sites. From a series of first-principles calculations, we propose a sodium diffusion mechanism and discuss the effects of various defects or substitutions on the diffusion kinetics, which may aid in further development of this class of materials. Moreover, we argue that the inherent vacant sites (Wyckoff position 8b), whose presence has been claimed to be critical for the fast sodium diffusion in this material, are less likely to contribute to the sodium diffusion. Finally, the thermodynamic stability and chemical compatibility of Na11Sn2PS12 are comparatively explored. Our theoretical study provides a more comprehensive understanding of Na11Sn2PS12-type conductors as well as helpful guidance on their optimal design for application in solid-state batteries
URI
https://pr.ibs.re.kr/handle/8788114/6903
DOI
10.1021/acs.chemmater.8b04965
ISSN
0897-4756
Appears in Collections:
Center for Nanoparticle Research(나노입자 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
First-Principles Investigations on Sodium Superionic Conductor Na11Sn2PS12.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse