BROWSE

Related Scientist

nanomat's photo.

nanomat
나노입자연구단
more info

ITEM VIEW & DOWNLOAD

The role of substituents in determining the redox potential of organic electrode materials in Li and Na rechargeable batteries: Electronic effects: Vs. substituent-Li/Na ionic interaction

Cited 10 time in webofscience Cited 9 time in scopus
635 Viewed 212 Downloaded
Title
The role of substituents in determining the redox potential of organic electrode materials in Li and Na rechargeable batteries: Electronic effects: Vs. substituent-Li/Na ionic interaction
Author(s)
Lee S.; Kwon J.E.; Hong J.; Park S.Y.; Kang K.
Publication Date
2019-05
Journal
JOURNAL OF MATERIALS CHEMISTRY A, v.7, no.18, pp.11438 - 11443
Publisher
ROYAL SOC CHEMISTRY
Abstract
© The Royal Society of Chemistry 2019. Rechargeable batteries based on organic electrode materials are an attractive energy storage alternative in terms of cost efficiency and sustainability. Feasible chemical modifications of organic materials also offer versatile and easily tunable electrochemical properties to use them as electrodes in battery systems. Herein, we discuss the effect of substituting functional groups on the redox potential of Li- and Na-ion cells using two novel disodium terephthalate (Na 2 TP) derivatives. It is shown that the substitution of electron donating functional groups generally lowers the discharge voltages of organic anode materials by shifting the lowest unoccupied molecular orbital (LUMO) energy, which is consistent with prior knowledge. In contrast, the same substitution is shown to also increase the voltage owing to specific ion interactions with the substituents. The strong binding interaction between the intercalating ion (Li + ) and methoxy substituents significantly lowers the free energy of the discharged products, resulting in elevation of the redox potential despite the high LUMO level of the host molecule. These findings suggest the competition between electronic effects and the ionic interaction as the governing factor determining the redox voltages, providing an important guideline to fine-tune the voltage of new organic electrodes
URI
https://pr.ibs.re.kr/handle/8788114/6589
DOI
10.1039/c9ta01508f
ISSN
2050-7488
Appears in Collections:
Center for Nanoparticle Research(나노입자 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
The role of substituents in determining the redox potential of organic electrode materials.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse