BROWSE

Related Scientist

cinap's photo.

cinap
나노구조물리연구단
more info

ITEM VIEW & DOWNLOAD

FIB-induced dislocations in Al submicron pillars: Annihilation by thermal annealing and effects on deformation behavior

Cited 33 time in webofscience Cited 36 time in scopus
1,186 Viewed 205 Downloaded
Title
FIB-induced dislocations in Al submicron pillars: Annihilation by thermal annealing and effects on deformation behavior
Author(s)
Lee S.; Jiwon Jeong; Kim Y.; Han S.M.; Kiener D.; Oh S.H.
Subject
Aluminum, ; Annealing, ; Dislocations, ; Focused ion beam, ; In-situ transmission electron microscopy, ; Slip bursts
Publication Date
2016-05
Journal
ACTA MATERIALIA, v.110, pp.283 - 294
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Abstract
In-situ transmission electron microscopy (TEM) annealing of submicron Al pillars (∼300-450 nm in diameter) fabricated by focused ion beam (FIB) shows that the dislocation loops formed by the high energy Ga+ ion beam impact near the material surface can be removed by annealing at around half of the melting point (Tm). Quantitative analysis of real-time TEM data reveals that the dislocation loops first show a ripening behavior at around 0.4Tm, i.e. larger loops coarsen at the expense of smaller ones. Subsequently, the ripened loops start to shrink and are eventually annihilated at ∼0.5Tm by the diffusion of thermally activated vacancies. Microcompression tests on the as-fabricated and annealed pillars suggest that the FIB-induced defects, particularly dislocation loops, distinctively affect the deformation behavior of submicron Al pillars; while the yield and flow stresses appear unaffected by the annealing, strain bursts are larger and more frequent in the annealed pillars compared to those of as-fabricated samples. In-situ TEM compression revealed that the initial plastic deformation and subsequent plastic flow of Al pillars are significantly altered by the presence of FIB-induced dislocation loops, as they actively respond to the applied stress. We observe that the initial dislocation activity in most FIB-prepared pillars was the glide of FIB-induced dislocation loops. With further straining, the dislocation loops escaped the pillar, leaving slip steps at the pillar surface and/or dislocation debris within the pillar volume via the interaction with other mobile dislocations. The subsequent dislocation slip is mostly localized at these locations, thereby forming large slip steps. Contrarily, in the case of annealed pillars, the deformation was rather homogeneous with the formation of multiple fine slip steps. The present direct TEM observations contribute to the understanding of the nature of FIB-induced defects and reveal their distinct roles in the deformation behaviors of submicron pillars. © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved
URI
https://pr.ibs.re.kr/handle/8788114/2607
DOI
10.1016/j.actamat.2016.03.017
ISSN
1359-6454
Appears in Collections:
Center for Integrated Nanostructure Physics(나노구조물리 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
FIB-induced dislocations in Al submicron pillarsAnnihilation by thermal annealing and effects on deformation behavior_Acta Materialia_오상호.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse