Highly Sensitive, Ultrafast, and Broadband Photo-Detecting Field-Effect Transistor with Transition-Metal Dichalcogenide van der Waals Heterostructures of MoTe2 and PdSe2
Cited 0 time in
Cited 0 time in
-
Title
- Highly Sensitive, Ultrafast, and Broadband Photo-Detecting Field-Effect Transistor with Transition-Metal Dichalcogenide van der Waals Heterostructures of MoTe2 and PdSe2
-
Author(s)
- Afzal, Amir Muhammad; Iqbal, Muhammad Zahir; Ghulam Dastgeer; Ahmad, Aqrab ul; Park, Byoungchoo
-
Publication Date
- 2021-06
-
Journal
- Advanced Science, v.8, no.11
-
Publisher
- Wiley-VCH Verlag
-
Abstract
- © 2021 The Authors. Advanced Science published by Wiley-VCH GmbH Recently, van der Waals heterostructures (vdWHs) based on transition-metal dichalcogenides (TMDs) have attracted significant attention owing to their superior capabilities and multiple functionalities. Herein, a novel vdWH field-effect transistor (FET) composed of molybdenum ditelluride (MoTe2) and palladium diselenide (PdSe2) is studied for highly sensitive photodetection performance in the broad visible and near-infrared (VNIR) region. A high rectification ratio of 6.3 × 105 is obtained, stemming from the sharp interface and low Schottky barriers of the MoTe2/PdSe2 vdWHs. It is also successfully demonstrated that the vdWH FET exhibits highly sensitive photo-detecting abilities, such as noticeably high photoresponsivity (1.24 × 105 A W−1), specific detectivity (2.42 × 1014 Jones), and good external quantum efficiency (3.5 × 106), not only due to the intra-TMD band-to-band transition but also due to the inter-TMD charge transfer (CT) transition. Further, rapid rise (16.1 µs) and decay (31.1 µs) times are obtained under incident light with a wavelength of 2000 nm due to the CT transition, representing an outcome one order of magnitude faster than values currently in the literature. Such TMD-based vdWH FETs would improve the photo-gating characteristics and provide a platform for the realization of a highly sensitive photodetector in the broad VNIR region.
-
URI
- https://pr.ibs.re.kr/handle/8788114/13679
-
DOI
- 10.1002/advs.202003713
-
ISSN
- 2198-3844
-
Appears in Collections:
- Center for Integrated Nanostructure Physics(나노구조물리 연구단) > 1. Journal Papers (저널논문)
- Files in This Item:
-
There are no files associated with this item.
-
- Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.