BROWSE

Related Scientist

csc's photo.

csc
복잡계자기조립연구단
more info

ITEM VIEW & DOWNLOAD

A Combination of Bio-Orthogonal Supramolecular Clicking and Proximity Chemical Tagging as a Supramolecular Tool for Discovery of Putative Proteins Associated with Laminopathic Disease

Cited 0 time in webofscience Cited 0 time in scopus
201 Viewed 0 Downloaded
Title
A Combination of Bio-Orthogonal Supramolecular Clicking and Proximity Chemical Tagging as a Supramolecular Tool for Discovery of Putative Proteins Associated with Laminopathic Disease
Author(s)
Jaehwan Sim; Ara Lee; Kim, Dasom; Kyung Lock Kim; Park, Bum-Joon; Park, Kyeng Min; Kimoon Kim
Publication Date
2023-05
Journal
SMALL, v.19, no.21
Publisher
WILEY-V C H VERLAG GMBH
Abstract
Protein mutations alter protein-protein interactions that can lead to a number of illnesses. Mutations in lamin A (LMNA) have been reported to cause laminopathies. However, the proteins associated with the LMNA mutation have mostly remained unexplored. Herein, a new chemical tool for proximal proteomics is reported, developed by a combination of proximity chemical tagging and a bio-orthogonal supramolecular latching based on cucurbit[7]uril (CB[7])-based host-guest interactions. As this host-guest interaction acts as a noncovalent clickable motif that can be unclicked on-demand, this new chemical tool is exploited for reliable detection of the proximal proteins of LMNA and its mutant that causes laminopathic dilated cardiomyopathy (DCM). Most importantly, a comparison study reveals, for the first time, mutant-dependent alteration in LMNA proteomic environments, which allows to identify putative laminopathic DCM-linked proteins including FOXJ3 and CELF2. This study demonstrates the feasibility of this chemical tool for reliable proximal proteomics, and its immense potential as a new research platform for discovering biomarkers associated with protein mutation-linked diseases.
URI
https://pr.ibs.re.kr/handle/8788114/13459
DOI
10.1002/smll.202208088
ISSN
1613-6810
Appears in Collections:
Center for Self-assembly and Complexity(복잡계 자기조립 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse