BROWSE

Related Scientist

Chang, Young Tae's photo.

Chang, Young Tae
복잡계 자기조립 연구단
more info

ITEM VIEW & DOWNLOAD

Neuroprotective effects of ex vivo-expanded regulatory T cells on trimethyltin-induced neurodegeneration in mice

Cited 0 time in webofscience Cited 0 time in scopus
17 Viewed 0 Downloaded
Title
Neuroprotective effects of ex vivo-expanded regulatory T cells on trimethyltin-induced neurodegeneration in mice
Author(s)
Park, Seon-Young; Yang, HyeJin; Ye, Minsook; Liu, Xiao; Shim, Insop; Young-Tae Chang; Bae, Hyunsu
Publication Date
2022-06
Journal
Journal of Neuroinflammation, v.19, no.1
Publisher
BioMed Central Ltd
Abstract
© 2022, The Author(s).Background: Trimethyltin (TMT) is a potent neurotoxicant that leads to hippocampal neurodegeneration. Regulatory T cells (Tregs) play an important role in maintaining the immune balance in the central nervous system (CNS), but their activities are impaired in neurodegenerative diseases. In this study, we aimed to determine whether adoptive transfer of Tregs, as a living drug, ameliorates hippocampal neurodegeneration in TMT-intoxicated mice. Methods: CD4+CD25+ Tregs were expanded in vitro and adoptively transferred to TMT-treated mice. First, we explored the effects of Tregs on behavioral deficits using the Morris water maze and elevated plus maze tests. Biomarkers related to memory formation, such as cAMP response element-binding protein (CREB), protein kinase C (PKC), neuronal nuclear protein (NeuN), nerve growth factor (NGF), and ionized calcium binding adaptor molecule 1 (Iba1) in the hippocampus were examined by immunohistochemistry after killing the mouse. To investigate the neuroinflammatory responses, the polarization status of microglia was examined in vivo and in vitro using real-time reverse transcription polymerase chain reaction (rtPCR) and Enzyme-linked immunosorbent assay (ELISA). Additionally, the inhibitory effects of Tregs on TMT-induced microglial activation were examined using time-lapse live imaging in vitro with an activation-specific fluorescence probe, CDr20. Results: Adoptive transfer of Tregs improved spatial learning and memory functions and reduced anxiety in TMT-intoxicated mice. Additionally, adoptive transfer of Tregs reduced neuronal loss and recovered the expression of neurogenesis enhancing molecules in the hippocampi of TMT-intoxicated mice. In particular, Tregs inhibited microglial activation and pro-inflammatory cytokine release in the hippocampi of TMT-intoxicated mice. The inhibitory effects of TMT were also confirmed via in vitro live time-lapse imaging in a Treg/microglia co-culture system. Conclusions: These data suggest that adoptive transfer of Tregs ameliorates disease progression in TMT-induced neurodegeneration by promoting neurogenesis and modulating microglial activation and polarization.
URI
https://pr.ibs.re.kr/handle/8788114/12030
DOI
10.1186/s12974-022-02512-z
ISSN
1742-2094
Appears in Collections:
Center for Self-assembly and Complexity(복잡계 자기조립 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse