Related Scientist

CINAP's photo.

나노구조물리 연구단
more info


Ultrasensitive Photodetection in MoS2 Avalanche Phototransistors

Cited 0 time in webofscience Cited 0 time in scopus
6 Viewed 0 Downloaded
Ultrasensitive Photodetection in MoS2 Avalanche Phototransistors
Seo, Junseok; Jin Hee Lee; Pak, Jinsu; Cho, Kyungjune; Kim, Jae-Keun; Kim, Jaeyoung; Jang, Juntae; Ahn, Heebeom; Lim, Seong Chu; Chung, Seungjun; Kang, Keehoon; Lee, Takhee
Publication Date
Advanced Science, v.8, no.19
John Wiley and Sons Inc
© 2021 The Authors. Advanced Science published by Wiley-VCH GmbHRecently, there have been numerous studies on utilizing surface treatments or photosensitizing layers to improve photodetectors based on 2D materials. Meanwhile, avalanche breakdown phenomenon has provided an ultimate high-gain route toward photodetection in the form of single-photon detectors. Here, the authors report ultrasensitive avalanche phototransistors based on monolayer MoS2 synthesized by chemical vapor deposition. A lower critical field for the electrical breakdown under illumination shows strong evidence for avalanche breakdown initiated by photogenerated carriers in MoS2 channel. By utilizing the photo-initiated carrier multiplication, their avalanche photodetectors exhibit the maximum responsivity of ≈3.4 × 107 A W−1 and the detectivity of ≈4.3 × 1016 Jones under a low dark current, which are a few orders of magnitudes higher than the highest values reported previously, despite the absence of any additional chemical treatments or photosensitizing layers. The realization of both the ultrahigh photoresponsivity and detectivity is attributed to the interplay between the carrier multiplication by avalanche breakdown and carrier injection across a Schottky barrier between the channel and metal electrodes. This work presents a simple and powerful method to enhance the performance of photodetectors based on carrier multiplication phenomena in 2D materials and provides the underlying physics of atomically thin avalanche photodetectors.
Appears in Collections:
Center for Integrated Nanostructure Physics(나노구조물리 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.


  • facebook


  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.