Active phase separation by turning towards regions of higher density
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhang, Jie | - |
dc.contributor.author | Alert, Ricard | - |
dc.contributor.author | Yan, Jing | - |
dc.contributor.author | Wingreen, Ned S. | - |
dc.contributor.author | Steve Granick | - |
dc.date.accessioned | 2021-07-12T05:50:09Z | - |
dc.date.accessioned | 2021-07-12T05:50:09Z | - |
dc.date.available | 2021-07-12T05:50:09Z | - |
dc.date.available | 2021-07-12T05:50:09Z | - |
dc.date.created | 2021-07-07 | - |
dc.date.issued | 2021-08 | - |
dc.identifier.issn | 1745-2473 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/9929 | - |
dc.description.abstract | © 2021, The Author(s), under exclusive licence to Springer Nature Limited.Studies of active matter, from molecular assemblies to animal groups, have revealed two broad classes of behaviour: a tendency to align yields orientational order and collective motion, whereas particle repulsion leads to self-trapping and motility-induced phase separation. Here we report a third class of behaviour: orientational interactions that produce active phase separation. Combining theory and experiments on self-propelled Janus colloids, we show that stronger repulsion on the rear than on the front of these particles produces non-reciprocal torques that reorient particle motion towards high-density regions. Particles thus self-propel towards crowded areas, which leads to phase separation. Clusters remain fluid and exhibit fast particle turnover, in contrast to the jammed clusters that typically arise from self-trapping, and interfaces are sufficiently wide that they span entire clusters. Overall, our work identifies a torque-based mechanism for phase separation in active fluids, and our theory predicts that these orientational interactions yield coexisting phases that lack internal orientational order. | - |
dc.language | 영어 | - |
dc.publisher | Nature Research | - |
dc.title | Active phase separation by turning towards regions of higher density | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000652569600002 | - |
dc.identifier.scopusid | 2-s2.0-85106341487 | - |
dc.identifier.rimsid | 76024 | - |
dc.contributor.affiliatedAuthor | Steve Granick | - |
dc.identifier.doi | 10.1038/s41567-021-01238-8 | - |
dc.identifier.bibliographicCitation | Nature Physics, v.17, no.8, pp.961 - + | - |
dc.relation.isPartOf | Nature Physics | - |
dc.citation.title | Nature Physics | - |
dc.citation.volume | 17 | - |
dc.citation.number | 8 | - |
dc.citation.startPage | 961 | - |
dc.citation.endPage | + | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Physics | - |
dc.relation.journalWebOfScienceCategory | Physics, Multidisciplinary | - |
dc.subject.keywordPlus | EMERGENT BEHAVIOR | - |
dc.subject.keywordPlus | PARTICLES | - |
dc.subject.keywordPlus | COLLOIDS | - |