Effects of TiO2 Interfacial Atomic Layers on Device Performances and Exciton Dynamics in ZnO Nanorod Polymer Solar Cells
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mi-Jin Jin | - |
dc.contributor.author | Junhyeon Jo | - |
dc.contributor.author | Ji-Hee Kim | - |
dc.contributor.author | Ki-Seok An | - |
dc.contributor.author | Mun Seok Jeong | - |
dc.contributor.author | Jeongyong Kim | - |
dc.contributor.author | Jung-Woo Yoo | - |
dc.date.available | 2015-04-20T05:43:47Z | - |
dc.date.created | 2014-09-30 | - |
dc.date.issued | 2014-07 | - |
dc.identifier.issn | 1944-8244 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/978 | - |
dc.description.abstract | The performances of organic electronic and/or photonic devices rely heavily on the nature of the inorganic/organic interface. Control over such hybrid interface properties has been an important issue for optimizing the performances of polymer solar cells bearing metal-oxide conducting channels. In this work, we studied the effects of an interfacial atomic layer in an inverted polymer solar cell based on a ZnO nanorod array on the device performance as well as the dynamics of the photoexcited carriers. We adopted highly conformal TiO2 interfacial layer using plasma enhanced atomic layer deposition (PEALD) to improve the compatibility between the solution-prepared active layer and the ZnO nanorod array. The TiO2 interfacial layer facilitated exciton separation and subsequent charge transfer into the nanorod channel, and it suppressed recombination of photogenerated carriers at the interface. The presence of even 1 PEALD cycle of TiO2 coating substantially improved the short-circuit current density (Jsc), open circuit voltage (Voc), and fill factor (FF), leading to more than 2-fold enhancement in the power conversion efficiency (PCE). The dynamics of the photoexcited carriers in our devices were studied using transient absorption (TA) spectroscopy. The TA results clearly revealed that the TiO2 coating played a key role as an efficient quencher of photogenerated excitons, thereby reducing the exciton lifetime. The electrochemical impedance spectra (EIS) provided further evidence that the TiO2 atomic interfacial layer promoted the charge transfer at the interface by suppressing recombination loss. | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | AMER CHEMICAL SOC | - |
dc.subject | solar cell, hybrid interface, ZnO nanorod, atomic layer deposition, transient absorption,electrochemical impedance spectroscopy | - |
dc.title | Effects of TiO2 Interfacial Atomic Layers on Device Performances and Exciton Dynamics in ZnO Nanorod Polymer Solar Cells | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000339472100101 | - |
dc.identifier.scopusid | 2-s2.0-84905030566 | - |
dc.identifier.rimsid | 2165 | ko |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Ji-Hee Kim | - |
dc.contributor.affiliatedAuthor | Mun Seok Jeong | - |
dc.contributor.affiliatedAuthor | Jeongyong Kim | - |
dc.identifier.doi | 10.1021/am5024435 | - |
dc.identifier.bibliographicCitation | ACS APPLIED MATERIALS & INTERFACES, v.6, no.14, pp.11649 - 11656 | - |
dc.citation.title | ACS APPLIED MATERIALS & INTERFACES | - |
dc.citation.volume | 6 | - |
dc.citation.number | 14 | - |
dc.citation.startPage | 11649 | - |
dc.citation.endPage | 11656 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 11 | - |
dc.description.scptc | 13 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordAuthor | atomic layer deposition | - |
dc.subject.keywordAuthor | electrochemical impedance spectroscopy | - |
dc.subject.keywordAuthor | hybrid interface | - |
dc.subject.keywordAuthor | solar cell | - |
dc.subject.keywordAuthor | transient absorption | - |
dc.subject.keywordAuthor | ZnO nanorod | - |