Recent Advances in Electrochemical Oxygen Reduction to H2O2: Catalyst and Cell DesignHighly Cited Paper
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Euiyeon Jung | - |
dc.contributor.author | Heejong Shin | - |
dc.contributor.author | Hooch Antink W. | - |
dc.contributor.author | Yung-Eun Sung | - |
dc.contributor.author | Taeghwan Hyeon | - |
dc.date.accessioned | 2020-12-22T03:01:32Z | - |
dc.date.accessioned | 2020-12-22T03:01:32Z | - |
dc.date.available | 2020-12-22T03:01:32Z | - |
dc.date.available | 2020-12-22T03:01:32Z | - |
dc.date.created | 2020-06-29 | - |
dc.date.issued | 2020-06 | - |
dc.identifier.issn | 2380-8195 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/7837 | - |
dc.description.abstract | Copyright © 2020 American Chemical Society. Electrochemical production of H2O2 from O2 is a promising alternative to the energy-intensive anthraquinone process that is currently used as an industry standard. Although most research on the oxygen reduction reaction (ORR) has focused on the 4-electron pathway to water relevant to fuel cells, the 2-electron ORR to produce H2O2 is also of significant commercial interest. The first half of this Perspective deals with the progress made in developing noble metal, carbon-based, and single-atom electrocatalysts and highlights the design strategies employed to obtain high selectivity toward H2O2. The second half addresses the challenges of large-scale production and how results obtained using a rotating ring disk electrode (RRDE) can be translated into commercially viable flow cells. This Perspective focuses on the design of catalysts and cells that will enable industrial-scale electrochemical H2O2 production. | - |
dc.language | 영어 | - |
dc.publisher | AMER CHEMICAL SOC | - |
dc.title | Recent Advances in Electrochemical Oxygen Reduction to H2O2: Catalyst and Cell Design | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000541766000022 | - |
dc.identifier.scopusid | 2-s2.0-85085765124 | - |
dc.identifier.rimsid | 72314 | - |
dc.contributor.affiliatedAuthor | Euiyeon Jung | - |
dc.contributor.affiliatedAuthor | Heejong Shin | - |
dc.contributor.affiliatedAuthor | Hooch Antink W. | - |
dc.contributor.affiliatedAuthor | Yung-Eun Sung | - |
dc.contributor.affiliatedAuthor | Taeghwan Hyeon | - |
dc.identifier.doi | 10.1021/acsenergylett.0c00812 | - |
dc.identifier.bibliographicCitation | ACS ENERGY LETTERS, v.5, no.6, pp.1881 - 1892 | - |
dc.relation.isPartOf | ACS ENERGY LETTERS | - |
dc.citation.title | ACS ENERGY LETTERS | - |
dc.citation.volume | 5 | - |
dc.citation.number | 6 | - |
dc.citation.startPage | 1881 | - |
dc.citation.endPage | 1892 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Electrochemistry | - |
dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.subject.keywordPlus | HYDROGEN-PEROXIDE SYNTHESIS | - |
dc.subject.keywordPlus | DOPED MESOPOROUS CARBON | - |
dc.subject.keywordPlus | ACTIVE-SITES | - |
dc.subject.keywordPlus | RATIONAL DESIGN | - |
dc.subject.keywordPlus | NITROGEN | - |
dc.subject.keywordPlus | ELECTROCATALYSTS | - |
dc.subject.keywordPlus | 2-ELECTRON | - |
dc.subject.keywordPlus | GRAPHENE | - |
dc.subject.keywordPlus | ALKALINE | - |
dc.subject.keywordPlus | BORON | - |