Advanced Hybrid Supercapacitor Based on a Mesoporous Niobium Pentoxide/Carbon as High-Performance AnodeHighly Cited Paper
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lim, E | - |
dc.contributor.author | Kim, H | - |
dc.contributor.author | Jo, C | - |
dc.contributor.author | Chun, J | - |
dc.contributor.author | Ku, K | - |
dc.contributor.author | Kim, S | - |
dc.contributor.author | Lee, HI | - |
dc.contributor.author | Nam, IS | - |
dc.contributor.author | Yoon, S | - |
dc.contributor.author | Kisuk Kang | - |
dc.contributor.author | Lee, J | - |
dc.date.available | 2015-04-19T10:57:32Z | - |
dc.date.created | 2014-11-12 | - |
dc.date.issued | 2014-09 | - |
dc.identifier.issn | 1936-0851 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/776 | - |
dc.description.abstract | Recently, hybrid supercapacitors (HSCs), which combine the use of battery and supercapacitor, have been extensively studied in order to satisfy increasing demands for large energy density and high power capability in energy-storage devices. For this purpose, the requirement for anode materials that provide enhanced charge storage sites (high capacity) and accommodate fast charge transport (high rate capability) has increased. Herein, therefore, a preparation of nanocomposite as anode material is presented and an advanced HSC using it is thoroughly analyzed. The HSC comprises a mesoporous Nb2O5/carbon (m-Nb2O5C) nanocomposite anode synthesized by a simple one-pot method using a block copolymer assisted self-assembly and commercial activated carbon (MSP-20) cathode under organic electrolyte. The m-Nb2O5C anode provides high specific capacity with outstanding rate performance and cyclability, mainly stemming from its enhanced pseudocapacitive behavior through introduction of a carbon-coated mesostructure within a voltage range from 3.0 to 1.1 V (vs Li/Liþ). The HSC using the m-Nb2O5C anode and MSP-20 cathode exhibits excellent energy and power densities (74 W h kg1 and 18 510 W kg1), with advanced cycle life (capacity retention: ∼90% at 1000 mA g1 after 1000 cycles) within potential range from 1.0 to 3.5 V. In particular, we note that the highest power density (18 510 W kg1) of HSC is achieved at 15 W h kg1, which is the highest level among similar HSC systems previously reported. With further study, the HSCs developed in this work could be a next-generation energy-storage device, bridging the performance gap between conventional batteries and supercapacitors. | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | AMER CHEMICAL SOC | - |
dc.subject | hybrid supercapacitors . Nb2O5 . pseudocapacitive properties . mesoporous materials . block copolymer-assisted self-assembly | - |
dc.title | Advanced Hybrid Supercapacitor Based on a Mesoporous Niobium Pentoxide/Carbon as High-Performance Anode | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000342184400025 | - |
dc.identifier.scopusid | 2-s2.0-84919896626 | - |
dc.identifier.rimsid | 16382 | ko |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Kisuk Kang | - |
dc.identifier.doi | 10.1021/nn501972w | - |
dc.identifier.bibliographicCitation | ACS NANO, v.8, no.9, pp.8968 - 8978 | - |
dc.citation.title | ACS NANO | - |
dc.citation.volume | 8 | - |
dc.citation.number | 9 | - |
dc.citation.startPage | 8968 | - |
dc.citation.endPage | 8978 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 149 | - |
dc.description.scptc | 155 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | LITHIUM-ION BATTERIES | - |
dc.subject.keywordPlus | ONE-POT SYNTHESIS | - |
dc.subject.keywordPlus | ELECTROCHEMICAL ENERGY-STORAGE | - |
dc.subject.keywordPlus | TRANSITION-METAL OXIDES | - |
dc.subject.keywordPlus | HIGH-POWER | - |
dc.subject.keywordPlus | PSEUDOCAPACITIVE CONTRIBUTIONS | - |
dc.subject.keywordPlus | NEGATIVE-ELECTRODE | - |
dc.subject.keywordPlus | ACTIVATED CARBON | - |
dc.subject.keywordPlus | RATE CAPABILITY | - |
dc.subject.keywordPlus | UNIFORM PORES | - |
dc.subject.keywordAuthor | hybrid supercapacitors | - |
dc.subject.keywordAuthor | Nb2O5 | - |
dc.subject.keywordAuthor | pseudocapacitive properties | - |
dc.subject.keywordAuthor | mesoporous materials | - |
dc.subject.keywordAuthor | block copolymer-assisted self-assembly | - |