Revisiting the strategies for stabilizing lithium metal anodes
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ji Hyun Um | - |
dc.contributor.author | Kookhan Kim | - |
dc.contributor.author | Jungjin Park | - |
dc.contributor.author | Yung-Eun Sung | - |
dc.contributor.author | Seung-Ho Yu | - |
dc.date.accessioned | 2020-12-22T02:56:26Z | - |
dc.date.accessioned | 2020-12-22T02:56:27Z | - |
dc.date.available | 2020-12-22T02:56:26Z | - |
dc.date.available | 2020-12-22T02:56:27Z | - |
dc.date.created | 2020-09-09 | - |
dc.date.issued | 2020-07 | - |
dc.identifier.issn | 2050-7488 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/7744 | - |
dc.description.abstract | © The Royal Society of Chemistry 2020. The inherent limitations of current lithium-ion batteries for increasing gravimetric and volumetric energy densities with intercalation-based electrode materials have drastically hindered the development of electric vehicles, unmanned aerial vehicles, and stationary energy storage. Lithium metal anodes have been widely considered as promising candidates to overcome the limitations of current anode materials because of their high energy density with low electrochemical potential. However, the unexpected formation of lithium dendrites can cause severe safety concerns and poor coulombic efficiency, which are major obstacles to the commercialization of lithium metal anodes. This review covers the conceptual understanding of current issues and recent advancements in lithium metal battery technologies. In addition, we provide the recommended guidance for commercializing lithium metal batteries | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | ROYAL SOC CHEMISTRY | - |
dc.subject | SOLID-ELECTROLYTE INTERPHASE | - |
dc.subject | POROUS CURRENT COLLECTOR | - |
dc.subject | HIGH IONIC-CONDUCTIVITY | - |
dc.subject | DENDRITE-FREE | - |
dc.subject | POLYMER ELECTROLYTE | - |
dc.subject | IN-SITU | - |
dc.subject | LI-ION | - |
dc.subject | SUPERCONCENTRATED ELECTROLYTES | - |
dc.subject | NONAQUEOUS ELECTROLYTE | - |
dc.subject | COULOMBIC EFFICIENCY | - |
dc.title | Revisiting the strategies for stabilizing lithium metal anodes | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000551538000001 | - |
dc.identifier.scopusid | 2-s2.0-85088695561 | - |
dc.identifier.rimsid | 72966 | - |
dc.contributor.affiliatedAuthor | Kookhan Kim | - |
dc.contributor.affiliatedAuthor | Yung-Eun Sung | - |
dc.identifier.doi | 10.1039/d0ta03774e | - |
dc.identifier.bibliographicCitation | JOURNAL OF MATERIALS CHEMISTRY A, v.8, no.28, pp.13874 - 13895 | - |
dc.citation.title | JOURNAL OF MATERIALS CHEMISTRY A | - |
dc.citation.volume | 8 | - |
dc.citation.number | 28 | - |
dc.citation.startPage | 13874 | - |
dc.citation.endPage | 13895 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | SOLID-ELECTROLYTE INTERPHASE | - |
dc.subject.keywordPlus | POROUS CURRENT COLLECTOR | - |
dc.subject.keywordPlus | HIGH IONIC-CONDUCTIVITY | - |
dc.subject.keywordPlus | DENDRITE-FREE | - |
dc.subject.keywordPlus | POLYMER ELECTROLYTE | - |
dc.subject.keywordPlus | IN-SITU | - |
dc.subject.keywordPlus | LI-ION | - |
dc.subject.keywordPlus | SUPERCONCENTRATED ELECTROLYTES | - |
dc.subject.keywordPlus | NONAQUEOUS ELECTROLYTE | - |
dc.subject.keywordPlus | COULOMBIC EFFICIENCY | - |