BROWSE

Related Scientist

's photo.

인지 및 사회성 연구단
more info

ITEM VIEW & DOWNLOAD

The molecular mechanism of synaptic activity-induced astrocytic volume transient

Cited 0 time in webofscience Cited 0 time in scopus
24 Viewed 0 Downloaded
Title
The molecular mechanism of synaptic activity-induced astrocytic volume transient
Author(s)
Junsung Woo; MinwooWendy Jang; Jaekwang Lee; Wuhyun Koh; Katsuhiko Mikoshiba; Changjoon. Justin Lee
Publication Date
2020-10
Journal
JOURNAL OF PHYSIOLOGY-LONDON, v.598, no.20, pp.4555 - 4572
Publisher
WILEY
Abstract
© 2020 The Authors. The Journal of Physiology © 2020 The Physiological Society. Key points Neuronal activity causes astrocytic volume change via K(+)uptake through TREK-1 containing two-pore domain potassium channels. The volume transient is terminated by Cl(-)efflux through the Ca2+-activated anion channel BEST1. The source of the Ca(2+)required to open BEST1 appears to be the stretch-activated TRPA1 channel. Intense neuronal activity is synaptically coupled with a physical change in astrocytes via volume transients. The brain volume changes dynamically and transiently upon intense neuronal activity through a tight regulation of ion concentrations and water movement across the plasma membrane of astrocytes. We have recently demonstrated that an intense neuronal activity and subsequent astrocytic AQP4-dependent volume transient are critical for synaptic plasticity and memory. We have also pharmacologically demonstrated a functional coupling between synaptic activity and the astrocytic volume transient. However, the precise molecular mechanisms of how intense neuronal activity and the astrocytic volume transient are coupled remain unclear. Here we utilized an intrinsic optical signal imaging technique combined with fluorescence imaging using ion sensitive dyes and molecular probes and electrophysiology to investigate the detailed molecular mechanisms in genetically modified mice. We report that a brief synaptic activity induced by a train stimulation (20 Hz, 1 s) causes a prolonged astrocytic volume transient (80 s) via K(+)uptake through TREK-1 containing two-pore domain potassium (K2P) channels, but not Kir4.1 or NKCC1. This volume change is terminated by Cl(-)efflux through the Ca2+-activated anion channel BEST1, but not the volume-regulated anion channel TTYH. The source of the Ca(2+)required to open BEST1 appears to be the stretch-activated TRPA1 channel in astrocytes, but not IP(3)R2. In summary, our study identifies several important astrocytic ion channels (AQP4, TREK-1, BEST1, TRPA1) as the key molecules leading to the neuronal activity-dependent volume transient in astrocytes. Our findings reveal new molecular and cellular mechanisms for the synaptic coupling of intense neuronal activity with a physical change in astrocytes via volume transients
URI
https://pr.ibs.re.kr/handle/8788114/7615
DOI
10.1113/JP279741
ISSN
0022-3751
Appears in Collections:
Center for Cognition and Sociality(인지 및 사회성 연구단) > 1. Journal Papers (저널논문)
Center for Cognition and Sociality(인지 및 사회성 연구단) > Cognitive Glioscience Group(인지 교세포과학 그룹) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse