BROWSE

Related Scientist

sun,jianke's photo.

sun,jianke
인공지능및로봇기반합성연구단
more info

ITEM VIEW & DOWNLOAD

Enhancing crystal growth using polyelectrolyte solutions and shear flow

Cited 0 time in webofscience Cited 9 time in scopus
560 Viewed 220 Downloaded
Title
Enhancing crystal growth using polyelectrolyte solutions and shear flow
Author(s)
Jian-Ke Sun; Yaroslav I. Sobolev; Zhang W.; Qiang Zhuang; Bartosz A. Grzybowski
Publication Date
2020-03
Journal
NATURE, v.579, no.7797, pp.73 - 79
Publisher
NATURE PUBLISHING GROUP
Abstract
© 2020, The Author(s), under exclusive licence to Springer Nature Limited.The ability to grow properly sized and good quality crystals is one of the cornerstones of single-crystal diffraction, is advantageous in many industrial-scale chemical processes1–3, and is important for obtaining institutional approvals of new drugs for which high-quality crystallographic data are required4–7. Typically, single crystals suitable for such processes and analyses are grown for hours to days during which any mechanical disturbances—believed to be detrimental to the process—are carefully avoided. In particular, stirring and shear flows are known to cause secondary nucleation, which decreases the final size of the crystals (though shear can also increase their quantity8–14). Here we demonstrate that in the presence of polymers (preferably, polyionic liquids), crystals of various types grow in common solvents, at constant temperature, much bigger and much faster when stirred, rather than kept still. This conclusion is based on the study of approximately 20 diverse organic molecules, inorganic salts, metal–organic complexes, and even some proteins. On typical timescales of a few to tens of minutes, these molecules grow into regularly faceted crystals that are always larger (with longest linear dimension about 16 times larger) than those obtained in control experiments of the same duration but without stirring or without polymers. We attribute this enhancement to two synergistic effects. First, under shear, the polymers and their aggregates disentangle, compete for solvent molecules and thus effectively ‘salt out’ (that is, induce precipitation by decreasing solubility of) the crystallizing species. Second, the local shear rate is dependent on particle size, ultimately promoting the growth of larger crystals (but not via surface-energy effects as in classical Ostwald ripening). This closed-system, constant-temperature crystallization driven by shear could be a valuable addition to the repertoire of crystal growth techniques, enabling accelerated growth of crystals required by the materials and pharmaceutical industries
URI
https://pr.ibs.re.kr/handle/8788114/7210
DOI
10.1038/s41586-020-2042-1
ISSN
0028-0836
Appears in Collections:
Center for Soft and Living Matter(첨단연성물질 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
Enhancing crystal growth using polyelectrolyte solutions and shear flow.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse