QUANTUM INFORMATION & COMPUTATION, v.20, no.1-2, pp.37 - 64
Publisher
RINTON PRESS, INC
Abstract
Entangled states, such as the Bell and GHZ states, are generated from separable states using matrices known to satisfy the Yang-Baxter equation and its generalization. This remarkable fact hints at the possibility of using braiding operators as quantum entanglers, and is part of a larger speculated connection between topological and quantum entanglement. We push the analysis of this connection forward, by showing that super-symmetry algebras can be used to construct large families of solutions of the spectral parameter-dependent generalized Yang-Baxter equation. We present a number of explicit examples and outline a general algorithm for arbitrary numbers of qubits. The operators we obtain produce, in turn, all the entangled states in a multi-qubit system classified by the Stochastic Local Operations and Classical Communication protocol introduced in quantum information theory. c Rinton Press