High Thermoelectric Performance in n-Type Polycrystalline SnSe via Dual Incorporation of Cl and PbSe and Dense Nanostructures
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Joonil Cha | - |
dc.contributor.author | Chongjian Zhou | - |
dc.contributor.author | Yong Kyu Lee | - |
dc.contributor.author | Cho S.-P. | - |
dc.contributor.author | In Chung | - |
dc.date.available | 2020-01-31T00:56:02Z | - |
dc.date.created | 2019-07-23 | - |
dc.date.issued | 2019-06 | - |
dc.identifier.issn | 1944-8244 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/6916 | - |
dc.description.abstract | © 2019 American Chemical Society.Despite extensive studies on emerging thermoelectric material SnSe, its n-type form is largely underdeveloped mainly due to the difficulty in stabilizing the carrier concentration at the optimal level. Here, we dually introduce Cl and PbSe to induce n-type conduction in intrinsic p-type SnSe. PbSe alloying enhances the power factor and suppresses lattice thermal conductivity at the same time, giving a highest thermoelectric figure of merit ZT of 1.2 at 823 K for n-type polycrystalline SnSe materials. The best composition is Sn0.90Pb0.15Se0.95Cl0.05. Samples prepared by the solid-state reaction show a high maximum ZT (ZTmax) ∼1.1 and ∼0.8 parallel and perpendicular to the press direction of spark plasma sintering, respectively. Remarkably, post-ball milling and annealing processes considerably reduce structural anisotropy, thereby leading to a ZTmax ∼1.2 along both the directions. Hence, the direction giving a ZTmax is controllable for this system using the specialized preparation methods for specimens. Spherical aberration-corrected scanning transmission electron microscopic analyses reveal the presence of heavily dense edge dislocations and strain fields, not observed in the p-type counterparts, which contribute to decreasing lattice thermal conductivity. Our theoretical calculations employing a Callaway-Debye model support the experimental results for thermal transport and microscopic structures | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | AMER CHEMICAL SOC | - |
dc.subject | dual-doping | - |
dc.subject | n-type | - |
dc.subject | nanostructure | - |
dc.subject | polycrystalline SnSe | - |
dc.subject | thermoelectrics | - |
dc.title | High Thermoelectric Performance in n-Type Polycrystalline SnSe via Dual Incorporation of Cl and PbSe and Dense Nanostructures | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000472683300040 | - |
dc.identifier.scopusid | 2-s2.0-85067390507 | - |
dc.identifier.rimsid | 68943 | - |
dc.contributor.affiliatedAuthor | Joonil Cha | - |
dc.contributor.affiliatedAuthor | Chongjian Zhou | - |
dc.contributor.affiliatedAuthor | Yong Kyu Lee | - |
dc.contributor.affiliatedAuthor | In Chung | - |
dc.identifier.doi | 10.1021/acsami.9b08108 | - |
dc.identifier.bibliographicCitation | ACS APPLIED MATERIALS & INTERFACES, v.11, no.24, pp.21645 - 21654 | - |
dc.citation.title | ACS APPLIED MATERIALS & INTERFACES | - |
dc.citation.volume | 11 | - |
dc.citation.number | 24 | - |
dc.citation.startPage | 21645 | - |
dc.citation.endPage | 21654 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | THERMAL-CONDUCTIVITY | - |
dc.subject.keywordPlus | DOPED PBTE | - |
dc.subject.keywordPlus | FIGURE | - |
dc.subject.keywordPlus | PHASE | - |
dc.subject.keywordPlus | DISLOCATIONS | - |
dc.subject.keywordPlus | RESISTIVITY | - |
dc.subject.keywordPlus | EFFICIENCY | - |
dc.subject.keywordPlus | VACANCY | - |
dc.subject.keywordPlus | ZT | - |
dc.subject.keywordAuthor | thermoelectrics | - |
dc.subject.keywordAuthor | polycrystalline SnSe | - |
dc.subject.keywordAuthor | n-type | - |
dc.subject.keywordAuthor | nanostructure | - |
dc.subject.keywordAuthor | dual-doping | - |