Marginal Magnesium Doping for High-Performance Lithium Metal Batteries
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Choi, SH | - |
dc.contributor.author | Lee, SJ | - |
dc.contributor.author | Yoo, DJ | - |
dc.contributor.author | Park, JH | - |
dc.contributor.author | Park, JH | - |
dc.contributor.author | Ko, YN | - |
dc.contributor.author | Park, J | - |
dc.contributor.author | Sung, YE | - |
dc.contributor.author | Chung, SY | - |
dc.contributor.author | Kim, H | - |
dc.contributor.author | Choi, JW | - |
dc.date.available | 2020-01-31T00:52:02Z | - |
dc.date.created | 2019-10-21 | - |
dc.date.issued | 2019-11 | - |
dc.identifier.issn | 1614-6832 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/6765 | - |
dc.description.abstract | Due to unparalleled theoretical capacity and operation voltage, metallic Li is considered as the most attractive candidate for lithium-ion battery anodes. However, Li metal electrodes suffer from uncontrolled dendrite growth and consequent interfacial instability, which result in an unacceptable level of performance in cycling stability and safety. Herein, it is reported that a marginal amount (1.5 at%) of magnesium (Mg) doping alters the surface properties of Li metal foil drastically in such a way that upon Li plating, a highly dense Li whisker layer is induced, instead of sharp dendrites, with enhanced interfacial stability and cycling performance. The effect of Mg doping is explained in terms of increased surface energy, which facilitates plating of Li onto the main surface over the existing whiskers. The present study offers a useful guideline for Li metal batteries, as it largely resolves the longstanding shortcoming of Li metal electrodes without significantly sacrificing their main advantages. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | WILEY-V C H VERLAG GMBH | - |
dc.subject | adsorption energy | - |
dc.subject | density functional theory | - |
dc.subject | interfacial energy | - |
dc.subject | lithium metal anodes | - |
dc.subject | surface energy | - |
dc.title | Marginal Magnesium Doping for High-Performance Lithium Metal Batteries | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000486873300001 | - |
dc.identifier.scopusid | 2-s2.0-85073962024 | - |
dc.identifier.rimsid | 70340 | - |
dc.contributor.affiliatedAuthor | Park, JH | - |
dc.contributor.affiliatedAuthor | Sung, YE | - |
dc.identifier.doi | 10.1002/aenm.201902278 | - |
dc.identifier.bibliographicCitation | ADVANCED ENERGY MATERIALS, v.9, no.41, pp.1902278 | - |
dc.citation.title | ADVANCED ENERGY MATERIALS | - |
dc.citation.volume | 9 | - |
dc.citation.number | 41 | - |
dc.citation.startPage | 1902278 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | SOLID-ELECTROLYTE INTERPHASES | - |
dc.subject.keywordPlus | ANODE | - |
dc.subject.keywordPlus | DEPOSITION | - |
dc.subject.keywordPlus | ENERGY | - |
dc.subject.keywordPlus | EFFICIENCY | - |
dc.subject.keywordPlus | BEHAVIOR | - |
dc.subject.keywordPlus | ION | - |
dc.subject.keywordPlus | MG | - |
dc.subject.keywordAuthor | adsorption energy | - |
dc.subject.keywordAuthor | density functional theory | - |
dc.subject.keywordAuthor | interfacial energy | - |
dc.subject.keywordAuthor | lithium metal anodes | - |
dc.subject.keywordAuthor | surface energy | - |