Enhanced Diffusion and Oligomeric Enzyme Dissociation
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ah-Young Jee | - |
dc.contributor.author | Kuo Chen | - |
dc.contributor.author | Tsvi Tlusty | - |
dc.contributor.author | Jiang Zhao | - |
dc.contributor.author | Steve Granick | - |
dc.date.available | 2020-01-31T00:51:36Z | - |
dc.date.created | 2020-01-07 | - |
dc.date.issued | 2019-12 | - |
dc.identifier.issn | 0002-7863 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/6746 | - |
dc.description.abstract | © 2019 American Chemical Society.The concept that catalytic enzymes can act as molecular machines transducing chemical activity into motion has conceptual and experimental support, but experimental support has involved oligomeric enzymes, often studied under conditions where the substrate concentration is higher than biologically relevant and accordingly exceeds kM, the Michaelis constant. Urease, a hexamer of subunits, has been considered to be the gold standard demonstrating enhanced diffusion. Here we show that urease and certain other oligomeric enzymes dissociate above kM into their subunits that diffuse more rapidly, thus providing a simple physical mechanism that contributes to enhanced diffusion in this regime of concentrations. Mindful that this conclusion may be controversial, our findings are supported by four independent analytical techniques: static light scattering, dynamic light scattering (DLS), size-exclusion chromatography (SEC), and fluorescence correlation spectroscopy (FCS). Data for urease are emphasized and the conclusion is validated for hexokinase, acetylcholinesterase, and aldolase. For hexokinase and aldolase no enhanced diffusion is observed except under conditions when these oligomeric enzymes dissociate. At substrate concentration regimes below kM at which acetylcholinesterase and urease do not dissociate, our finding showing up to 10% enhancement of the diffusion coefficient is consistent with various theoretical scenarios in the literature | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | AMER CHEMICAL SOC | - |
dc.title | Enhanced Diffusion and Oligomeric Enzyme Dissociation | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000505627300022 | - |
dc.identifier.scopusid | 2-s2.0-85076758237 | - |
dc.identifier.rimsid | 71039 | - |
dc.contributor.affiliatedAuthor | Ah-Young Jee | - |
dc.contributor.affiliatedAuthor | Tsvi Tlusty | - |
dc.contributor.affiliatedAuthor | Steve Granick | - |
dc.identifier.doi | 10.1021/jacs.9b06949 | - |
dc.identifier.bibliographicCitation | JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, v.141, no.51, pp.20068 | - |
dc.citation.title | JOURNAL OF THE AMERICAN CHEMICAL SOCIETY | - |
dc.citation.volume | 141 | - |
dc.citation.number | 51 | - |
dc.citation.startPage | 20068 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | MICROMOTORS | - |
dc.subject.keywordPlus | UREASE | - |