Measurement of lateral and axial resolution of confocal Raman microscope using dispersed carbon nanotubes and suspended graphene
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Youngbum Kim | - |
dc.contributor.author | Eun Ji Lee | - |
dc.contributor.author | Shrawan Roy | - |
dc.contributor.author | Anir S. Sharbirin | - |
dc.contributor.author | Lars-Gunnar Ranz | - |
dc.contributor.author | Thomas Dieing | - |
dc.contributor.author | Jeongyong Kim | - |
dc.date.available | 2019-11-13T07:31:38Z | - |
dc.date.created | 2019-10-21 | - |
dc.date.issued | 2020-01 | - |
dc.identifier.issn | 1567-1739 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/6400 | - |
dc.description.abstract | © 2019 Korean Physical SocietyA confocal Raman microscope (CRM) facilitates visualization of the spatial distribution of molecular bonds or phonon modes at the submicron level and has been extensively used in the characterization of nanomaterials and devices. The lateral and axial resolution is a key specification that defines the performance of CRM, however, the interpretation of spatial resolution in the literature is often ambiguous, making it often difficult to directly compare Raman images obtained under different conditions. In this report, a convenient and reliable measurement protocol using dispersed carbon nanotubes and suspended graphene as test specimens is proposed to facilitate the determination of the lateral and axial resolutions of a CRM. Spatial resolution values comparable to the results based on Rayleigh criterion calculations were obtained using Raman mapping images of test specimens. This was achieved without the need for complex deconvolution processes or the consideration of an asymmetric dielectric environment | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | ELSEVIER SCIENCE BV | - |
dc.title | Measurement of lateral and axial resolution of confocal Raman microscope using dispersed carbon nanotubes and suspended graphene | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000496996300012 | - |
dc.identifier.scopusid | 2-s2.0-85073107463 | - |
dc.identifier.rimsid | 70275 | - |
dc.contributor.affiliatedAuthor | Youngbum Kim | - |
dc.identifier.doi | 10.1016/j.cap.2019.10.012 | - |
dc.identifier.bibliographicCitation | CURRENT APPLIED PHYSICS, v.20, no.1, pp.71 - 77 | - |
dc.citation.title | CURRENT APPLIED PHYSICS | - |
dc.citation.volume | 20 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 71 | - |
dc.citation.endPage | 77 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.description.journalRegisteredClass | kci | - |
dc.subject.keywordAuthor | FWHM | - |
dc.subject.keywordAuthor | Raman mapping | - |
dc.subject.keywordAuthor | Raman spectroscopy | - |
dc.subject.keywordAuthor | Rayleigh criterion | - |
dc.subject.keywordAuthor | Resolution | - |