BROWSE

Related Scientist

cinap's photo.

cinap
나노구조물리연구단
more info

ITEM VIEW & DOWNLOAD

Rapid oxygen diffusive lithium-oxygen batteries using a restacking-inhibited, free-standing graphene cathode film

DC Field Value Language
dc.contributor.authorIn-Sun Jung-
dc.contributor.authorHyuk Jae Kwon-
dc.contributor.authorMokwon Kim-
dc.contributor.authorDoyoung Kim-
dc.contributor.authorJung-Hwa Kim-
dc.contributor.authorHyangsook Lee-
dc.contributor.authorDongjin Yun-
dc.contributor.authorSunjung Byun-
dc.contributor.authorDaeun Yu-
dc.contributor.authorHyunju An-
dc.contributor.authorJaeduck Jang-
dc.contributor.authorDongmin Im-
dc.contributor.authorHyoyoung Lee-
dc.date.available2019-08-19T02:05:59Z-
dc.date.created2019-05-29-
dc.date.issued2019-05-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/5975-
dc.description.abstract© The Royal Society of Chemistry. A graphene-based porous electrode for a lithium-oxygen (Li-O 2 ) battery is investigated for use in next generation energy storage systems. The porosity of the cathode electrode in Li-O 2 batteries is a key factor in increasing their oxygen diffusion rate and electrochemical activity, and enables a longer cycle life. In addition, the adsorption behavior of the electrolyte is an important factor for the charging process and diffusion of oxygen. We report the fabrication of a restacking-inhibited film cathode using corrugated and highly porous reduced graphene flakes that have an outstanding capacity and cycle life. We have demonstrated a robust porous cathode film for the next generation Li-O 2 batteries, which provides (1) rich voids and spaces for oxygen-related reactions, (2) easy accessibility to the electrolyte and rapid oxygen diffusion. This study can be applied for the design of new solution-processed graphene and the development of Li-O 2 battery cathodes-
dc.language영어-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleRapid oxygen diffusive lithium-oxygen batteries using a restacking-inhibited, free-standing graphene cathode film-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000472183200025-
dc.identifier.scopusid2-s2.0-85064995245-
dc.identifier.rimsid68126-
dc.contributor.affiliatedAuthorDoyoung Kim-
dc.contributor.affiliatedAuthorHyoyoung Lee-
dc.identifier.doi10.1039/c9ta00320g-
dc.identifier.bibliographicCitationJOURNAL OF MATERIALS CHEMISTRY A, v.7, no.17, pp.10397 - 10404-
dc.relation.isPartOfJOURNAL OF MATERIALS CHEMISTRY A-
dc.citation.titleJOURNAL OF MATERIALS CHEMISTRY A-
dc.citation.volume7-
dc.citation.number17-
dc.citation.startPage10397-
dc.citation.endPage10404-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusSOLID-STATE NMR-
dc.subject.keywordPlusCHEMICAL-SHIFT-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordPlusPAPER-
dc.subject.keywordPlusWATER-
Appears in Collections:
Center for Integrated Nanostructure Physics(나노구조물리 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
Rapid oxygen_Journal of Materials Chemistry A_Hyoyoung Lee.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse