Porphyrin Boxes

Cited 0 time in webofscience Cited 0 time in scopus
5 Viewed 0 Downloaded
Title
Porphyrin Boxes
Author(s)
Rahul Dev Mukhopadhyay; Kim, Y; Koo, J; Kimoon Kim
Publication Date
2018-11
Journal
ACCOUNTS OF CHEMICAL RESEARCH, v.51, no.11, pp.2730 - 2738
Publisher
AMER CHEMICAL SOC
Abstract
In order to fabricate efficient molecular photonic devices, it has been a long-held aspiration for chemists to understand and mimic natural light-harvesting complexes where a rapid and efficient transfer of excitation energy between chlorophyll pigments is observed. Synthetic porphyrins are attractive building blocks in this regard because of their rigid and planar geometry, high thermal and electronic stability, high molar extinction, small and tunable band gap, and tweakable optical as well as redox behavior. Owing to these fascinating properties, various types of porphyrin-based architectures have been reported utilizing both covalent and noncovalent approaches. However, it still remains a challenge to construct chemically robust, well-defined three-dimensional porphyrin cages which can be easily synthesized and yet suitable for useful applications both in solution as well as in solid state. Working on this idea, we recently synthesized box-shaped organic cages, which we called porphyrin boxes, by making use of dynamic covalent chemistry of imine condensation reaction between 4-connecting, square-shaped, tetraformylporphyrin and 3-connecting, triangular-shaped, triamine molecules. Various presynthetic, as well as postsynthetic modifications, can be carried out on porphyrin boxes including a variation of the alkyl chain length in their 3-connecting subunit, chemical functionalization, and metalation of the porphyrin core. This can remarkably tune their inherent properties, e.g., solubility, window size, volume, and polarity of the internal void. The porphyrin boxes can therefore be considered as a significant addition to the family of multiporphyrin-based architectures, and because of their chemical stability and shape persistency, the applications of porphyrin boxes expand beyond the photophysical properties of an artificial light-harvesting complex. Consequently, they have been exploited as porous organic cages, where their gas adsorption properties have been investigated. By incorporating them in a lipid bilayer membrane, an iodide selective synthetic ion channel has also been demonstrated. Further, we have explored electrocatalytic reduction of carbon dioxide using Fe(III) metalated porphyrin boxes. Additionally, the precise size and ease of metalation of porphyrin boxes allowed us to utilize them as premade building blocks for creating coordination-based hierarchical superstructures. Considering these developments, it may be worth combining the photophysical properties of porphyrin with the shape-persistent porous nature of porphyrin boxes to explore other novel applications. This Account summarizes our recent work on porphyrin boxes, starting with their design, structural features, and applications in different fields. We also try to provide scientific insight into the future opportunities that these amazing boxes have in store for exploring the still uncharted challenging domains in the field of supramolecular chemistry in a confined space. © 2018 American Chemical Society
URI
https://pr.ibs.re.kr/handle/8788114/5775
ISSN
0001-4842
Appears in Collections:
Center for Self-assembly and Complexity(복잡계 자기조립 연구단) > Journal Papers (저널논문)
Files in This Item:
acs.accounts.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse