Plasmonically Coupled Nanoreactors for NIR-Light-Mediated Remote Stimulation of Catalysis in Living Cells

Cited 0 time in webofscience Cited 0 time in scopus
8 Viewed 3 Downloaded
Title
Plasmonically Coupled Nanoreactors for NIR-Light-Mediated Remote Stimulation of Catalysis in Living Cells
Author(s)
Amit Kumar; Sumit Kumar; Nitee Kumari; Seon Hee Lee; Jay Han; Issac J. Michael; Yoon-Kyoung Cho; In Su Lee
Publication Date
2019-02
Journal
ACS CATALYSIS, v.9, no.2, pp.977 - 990
Publisher
American Chemical Society
Abstract
Artificial nanoreactors that can facilitate catalysis in living systems on-demand with the aid of a remotely operable and biocompatible energy source are needed to leverage the chemical diversity and expediency of advanced chemical synthesis in biology and medicine. Here, we designed and synthesized plasmonically integrated nanoreactors (PINERs) with highly tunable structure and NIR-light-induced synergistic function for efficiently promoting unnatural catalytic reactions inside living cells. We devised a synthetic approach toward PINERs by investigating the crucial role of metal-tannin coordination polymer nanofilm - the pH-induced decomplexation-mediated phase-transition process - for growing arrays of Au-nanospheroid-units, constructing a plasmonic corona around the proximal and reactant-accessible silica-compartmentalized catalytic nanospace. Owing to the extensive plasmonic coupling effect, PINERs show strong and tunable optical absorption in the visible to NIR range, ultrabright plasmonic light scattering, controllable thermoplasmonic effect, and remarkable catalysis; and, upon internalization by living cells, PINERs are highly biocompatible and demonstrate dark-field microscpy-based bioimaging features. Empowered with the synergy between plasmonic and catalytic effects and reactant/product transport, facilitated by the NIR-irradiation, PINERs can perform intracellular catalytic reactions with dramatically accelerated rates and efficiently synthesize chemically activated fluorescence-probes inside living cells. Copyright © 2018 American Chemical Society.
URI
https://pr.ibs.re.kr/handle/8788114/5715
ISSN
2155-5435
Appears in Collections:
Center for Soft and Living Matter(첨단연성물질 연구단) > Journal Papers (저널논문)
Files in This Item:
Plasmonically Coupled Nanoreactors for NIR-Light-Mediated Remote Stimulation of Catalysis in Living Cells.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse