BROWSE

Related Scientist

Researcher

다차원 탄소재료 연구단
다차원 탄소재료 연구단
more info

In Situ Atomic-Scale Observation of Surface-Tension-Induced Structural Transformation of Ag-NiPx Core-Shell Nanocrystals

Cited 0 time in webofscience Cited 0 time in scopus
19 Viewed 2 Downloaded
Title
In Situ Atomic-Scale Observation of Surface-Tension-Induced Structural Transformation of Ag-NiPx Core-Shell Nanocrystals
Author(s)
Xing Huang; Zhongqiang Liu; Marie-Mathilde Millet; Jichen Dong; Milivoj Plodine; Feng Ding; Robert Schlogl; Marc-Georg Willinger
Publication Date
2018-07
Journal
ACS NANO, v.12, no.7, pp.7197 - 7205
Publisher
AMER CHEMICAL SOC
Abstract
The properties of nanocrystals are highly dependent on their morphology, composition, and structure. Tailored synthesis over these parameters is successfully applied for the production of nanocrystals with desired properties for specific applications. However, in order to obtain full control over the properties, the behavior of nanocrystals under external stimuli and application conditions needs to be understood. Herein, using Ag-NiPx nanocrystals as a model system, we investigate the structural evolution upon thermal treatment by in situ aberration-corrected scanning transmission electron microscopy. A combination of real-time imaging with elemental analysis enables the observation of the transformation from a Ag-NiPx core shell configuration to a Janus structure at the atomic scale. The transformation occurs through dewetting and crystallization of the NiPx shell and is accompanied by surface segregation of Ag. Further temperature increase leads to a complete sublimation of Ag and formation of individual Ni12P5 nanocrystals. The transformation is rationalized by theoretical modeling based on density functional theory calculations. Our model suggests that the transformation is driven by changes of the surface energy of NiPX and the interfacial energy between NiP(x)The and Ag. The direct observation of atomistic dynamics during thermal-treatment-induced structural modification will help to understand more complex transformations that are induced by aging over time or the interaction with a reactive gas phase in applications such as catalysis © 2018 American Chemical Society
URI
https://pr.ibs.re.kr/handle/8788114/5549
ISSN
1936-0851
Appears in Collections:
Center for Multidimensional Carbon Materials(다차원 탄소재료 연구단) > Journal Papers (저널논문)
Files in This Item:
10. acsnano.8b03106.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse