BROWSE

Related Scientist

steve,granick's photo.

steve,granick
인공지능및로봇기반합성연구단
more info

ITEM VIEW & DOWNLOAD

Machine learning assembly landscapes from particle tracking data

DC Field Value Language
dc.contributor.authorAndrew W. Long-
dc.contributor.authorJie Zhang-
dc.contributor.authorSteve Granick-
dc.contributor.authorAndrew L. Ferguson-
dc.date.available2018-07-18T02:09:49Z-
dc.date.created2018-03-15-
dc.date.issued2015-11-
dc.identifier.issn1744-683X-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/4849-
dc.description.abstractBottom-up self-assembly offers a powerful route for the fabrication of novel structural and functional materials. Rational engineering of self-assembling systems requires understanding of the accessible aggregation states and the structural assembly pathways. In this work, we apply nonlinear machine learning to experimental particle tracking data to infer low-dimensional assembly landscapes mapping the morphology, stability, and assembly pathways of accessible aggregates as a function of experimental conditions. To the best of our knowledge, this represents the first time that collective order parameters and assembly landscapes have been inferred directly from experimental data. We apply this technique to the nonequilibrium self-assembly of metallodielectric Janus colloids in an oscillating electric field, and quantify the impact of field strength, oscillation frequency, and salt concentration on the dominant assembly pathways and terminal aggregates. This combined computational and experimental framework furnishes new understanding of self-assembling systems, and quantitatively informs rational engineering of experimental conditions to drive assembly along desired aggregation pathways. © The Royal Society of Chemistry 2015-
dc.description.uri1-
dc.language영어-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleMachine learning assembly landscapes from particle tracking data-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000363204000013-
dc.identifier.scopusid2-s2.0-84944339306-
dc.identifier.rimsid62553-
dc.date.tcdate2018-10-01-
dc.contributor.affiliatedAuthorSteve Granick-
dc.identifier.doi10.1039/c5sm01981h-
dc.identifier.bibliographicCitationSOFT MATTER, v.11, no.41, pp.8141 - 8153-
dc.citation.titleSOFT MATTER-
dc.citation.volume11-
dc.citation.number41-
dc.citation.startPage8141-
dc.citation.endPage8153-
dc.date.scptcdate2018-10-01-
dc.description.wostc16-
dc.description.scptc17-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusNONLINEAR DIMENSIONALITY REDUCTION-
dc.subject.keywordPlusFREE-ENERGY LANDSCAPES-
dc.subject.keywordPlusJANUS PARTICLES-
dc.subject.keywordPlusDIFFUSION MAPS-
dc.subject.keywordPlusELECTRIC-FIELDS-
dc.subject.keywordPlusSKETCH-MAP-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusREPRESENTATION-
dc.subject.keywordPlusNANOSTRUCTURES-
dc.subject.keywordPlusALIGNMENT-
Appears in Collections:
Center for Soft and Living Matter(첨단연성물질 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
2015_Soft Matter_Steve_Machine learning assembly landscapes from particle tracking data.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse