Enzyme leaps fuel antichemotaxis
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ah-Young Jee | - |
dc.contributor.author | Sandipan Dutta | - |
dc.contributor.author | Yoon-Kyoung Cho | - |
dc.contributor.author | Tsvi Tlusty | - |
dc.contributor.author | Steve Granick | - |
dc.date.available | 2018-07-18T02:07:25Z | - |
dc.date.created | 2018-01-23 | ko |
dc.date.issued | 2018-01 | - |
dc.identifier.issn | 0027-8424 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/4726 | - |
dc.description.abstract | There is mounting evidence that enzyme diffusivity is enhanced when the enzyme is catalytically active. Here, using superresolution microscopy [stimulated emission-depletion fluorescence correlation spectroscopy (STED-FCS)], we show that active enzymes migrate spontaneously in the direction of lower substrate concentration ("antichemotaxis") by a process analogous to the run-and- tumble foraging strategy of swimming microorganisms and our theory quantifies the mechanism. The two enzymes studied, urease and acetylcholinesterase, display two families of transit times through subdiffraction-sized focus spots, a diffusive mode and a ballistic mode, and the latter transit time is close to the inverse rate of catalytic turnover. This biochemical information-processing algorithm may be useful to design synthetic self-propelled swimmers and nanoparticles relevant to active materials. Executed by molecules lacking the decision-making circuitry of microorganisms, antichemotaxis by this run-and-tumble process offers the biological function to homogenize product concentration, which could be significant in situations when the reactant concentration varies from spot to spot | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | NATL ACAD SCIENCES | - |
dc.subject | enzyme | - |
dc.subject | chemotaxis | - |
dc.subject | active matter | - |
dc.subject | FCS | - |
dc.subject | fluorescence correlation spectroscopy | - |
dc.title | Enzyme leaps fuel antichemotaxis | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000419128700019 | - |
dc.identifier.scopusid | 2-s2.0-85040163828 | - |
dc.identifier.rimsid | 61949 | ko |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Ah-Young Jee | - |
dc.contributor.affiliatedAuthor | Sandipan Dutta | - |
dc.contributor.affiliatedAuthor | Yoon-Kyoung Cho | - |
dc.contributor.affiliatedAuthor | Tsvi Tlusty | - |
dc.contributor.affiliatedAuthor | Steve Granick | - |
dc.identifier.doi | 10.1073/pnas.1717844115 | - |
dc.identifier.bibliographicCitation | PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, v.115, no.1, pp.14 - 18 | - |
dc.citation.title | PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA | - |
dc.citation.volume | 115 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 14 | - |
dc.citation.endPage | 18 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 1 | - |
dc.description.scptc | 2 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | FLUORESCENCE CORRELATION SPECTROSCOPY | - |
dc.subject.keywordPlus | PROTEIN MACHINES | - |
dc.subject.keywordPlus | CHEMOTAXIS | - |
dc.subject.keywordPlus | GENERATION | - |
dc.subject.keywordPlus | DIFFUSION | - |
dc.subject.keywordPlus | MOLECULES | - |
dc.subject.keywordAuthor | enzyme | - |
dc.subject.keywordAuthor | chemotaxis | - |
dc.subject.keywordAuthor | active matter | - |
dc.subject.keywordAuthor | FCS | - |
dc.subject.keywordAuthor | fluorescence correlation spectroscopy | - |