Na+/Vacancy Disordered P2-Na0.67Co1-xTixO2: High-Energy and High-Power Cathode Materials for Sodium Ion Batteries
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Seok Mun Kang | - |
dc.contributor.author | Jae-Hyuk Park | - |
dc.contributor.author | Aihua Jin | - |
dc.contributor.author | Jung Y.H. | - |
dc.contributor.author | Mun J. | - |
dc.contributor.author | Yung-Eun Sung | - |
dc.date.available | 2018-07-18T02:06:58Z | - |
dc.date.created | 2018-04-16 | - |
dc.date.issued | 2018-01 | - |
dc.identifier.issn | 1944-8244 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/4706 | - |
dc.description.abstract | Although sodium ion batteries (NIBs) have gained wide interest, their poor energy density poses a serious challenge for their practical applications. Therefore, high-energy-density cathode materials are required for NIBs to enable the utilization of a large amount of reversible Na ions. This study presents a P2-type Na0.67Co1-xTixO2 (x < 0.2) cathode with an extended potential range higher than 4.4 V to present a high specific capacity of 166 mAh g-1. A group of P2-type cathodes containing various amounts of Ti is prepared using a facile synthetic method. These cathodes show different behaviors of the Na+/vacancy ordering. Na0.67CoO2 suffers severe capacity loss at high voltages due to irreversible structure changes causing serious polarization, while the Ti-substituted cathodes have long credible cycleability as well as high energy. In particular, Na0.67Co0.90Ti0.10O2 exhibits excellent capacity retention (115 mAh g-1) even after 100 cycles, whereas Na0.67CoO2 exhibits negligible capacity retention (<10 mAh g-1) at 4.5 V cutoff conditions. Na0.67Co0.90Ti0.10O2 also exhibits outstanding rate capabilities of 108 mAh g-1 at a current density of 1000 mA g-1 (7.4 C). Increased sodium diffusion kinetics from mitigated Na+/vacancy ordering, which allows high Na+ utilization, are investigated to find in detail the mechanism of the improvement by combining systematic analyses comprising TEM, in situ XRD, and electrochemical methods. © 2018 American Chemical Society | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | AMER CHEMICAL SOC | - |
dc.subject | high energy density | - |
dc.subject | high potential | - |
dc.subject | high power | - |
dc.subject | in situ XRD | - |
dc.subject | Ti doping | - |
dc.title | Na+/Vacancy Disordered P2-Na0.67Co1-xTixO2: High-Energy and High-Power Cathode Materials for Sodium Ion Batteries | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000424728800046 | - |
dc.identifier.scopusid | 2-s2.0-85041432447 | - |
dc.identifier.rimsid | 63104 | ko |
dc.contributor.affiliatedAuthor | Seok Mun Kang | - |
dc.contributor.affiliatedAuthor | Jae-Hyuk Park | - |
dc.contributor.affiliatedAuthor | Aihua Jin | - |
dc.contributor.affiliatedAuthor | Yung-Eun Sung | - |
dc.identifier.doi | 10.1021/acsami.7b16077 | - |
dc.identifier.bibliographicCitation | ACS APPLIED MATERIALS & INTERFACES, v.10, no.4, pp.3562 - 3570 | - |
dc.citation.title | ACS APPLIED MATERIALS & INTERFACES | - |
dc.citation.volume | 10 | - |
dc.citation.number | 4 | - |
dc.citation.startPage | 3562 | - |
dc.citation.endPage | 3570 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordAuthor | high energy density | - |
dc.subject.keywordAuthor | high potential | - |
dc.subject.keywordAuthor | high power | - |
dc.subject.keywordAuthor | in situ XRD | - |
dc.subject.keywordAuthor | Ti doping | - |