BROWSE

Related Scientist

nanomat's photo.

nanomat
나노입자연구단
more info

ITEM VIEW & DOWNLOAD

Bioinspired Synthesis of Melaninlike Nanoparticles for Highly N-Doped Carbons Utilized as Enhanced CO2 Adsorbents and Efficient Oxygen Reduction Catalysts

DC Field Value Language
dc.contributor.authorHee Soo Kim-
dc.contributor.authorMinhyoung Kim-
dc.contributor.authorMin Seok Kang-
dc.contributor.authorJihoon Ahn-
dc.contributor.authorYung-Eun Sung-
dc.contributor.authorWon Cheol Yoo-
dc.date.available2018-07-18T02:06:25Z-
dc.date.created2018-04-16-
dc.date.issued2018-02-
dc.identifier.issn2168-0485-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/4686-
dc.description.abstractHighly N-doped nanoporous carbons have been of great interest as a high uptake CO2 adsorbent and as an efficient metal-free oxygen reduction reaction (ORR) catalyst. Therefore, it is essential to produce porosity-tunable and highly N-doped carbons through cost-effective means. Herein, we introduce the bioinspired synthesis of a monodisperse and N-enriched melaninlike polymer (MP) resembling the sepia biopolymer (SP) from oceanic cuttlefish. These polymers were subsequently utilized for highly N-doped synthetic carbon (MC) and biomass carbon (SC) spheres. An adequate CO2 activation process fine-tunes the ultramicroporosity (<1 nm) of N-doped MC and SC spheres, those with maximum ultramicroporosities of which show remarkable CO2 adsorption capacities. In addition, N-doped MC and SC with ultrahigh surface areas of 2677 and 2506 m2/g, respectively, showed excellent ORR activities with a favored four electron reduction pathway, long-term durability, and better methanol tolerance, comparable to a commercial Pt-based catalyst. © 2017 American Chemical Society-
dc.description.uri1-
dc.language영어-
dc.publisherAMER CHEMICAL SOC-
dc.subjectBioinspired synthesis-
dc.subjectBiomass-
dc.subjectCO2 adsorption-
dc.subjectN-doped carbon-
dc.subjectOxygen reduction reaction-
dc.titleBioinspired Synthesis of Melaninlike Nanoparticles for Highly N-Doped Carbons Utilized as Enhanced CO2 Adsorbents and Efficient Oxygen Reduction Catalysts-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000424728300086-
dc.identifier.scopusid2-s2.0-85041459766-
dc.identifier.rimsid63079ko
dc.contributor.affiliatedAuthorMinhyoung Kim-
dc.contributor.affiliatedAuthorYung-Eun Sung-
dc.identifier.doi10.1021/acssuschemeng.7b03680-
dc.identifier.bibliographicCitationACS SUSTAINABLE CHEMISTRY & ENGINEERING, v.6, no.2, pp.2324 - 2333-
dc.citation.titleACS SUSTAINABLE CHEMISTRY & ENGINEERING-
dc.citation.volume6-
dc.citation.number2-
dc.citation.startPage2324-
dc.citation.endPage2333-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordAuthorBioinspired synthesis-
dc.subject.keywordAuthorBiomass-
dc.subject.keywordAuthorCO2 adsorption-
dc.subject.keywordAuthorN-doped carbon-
dc.subject.keywordAuthorOxygen reduction reaction-
Appears in Collections:
Center for Nanoparticle Research(나노입자 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
acssuschemeng_Bioinspired Synthesis of Melaninlike Nanoparticles for Highly.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse