Categorification of invariants in gauge theory and symplectic geometry

Cited 0 time in webofscience Cited 0 time in scopus
57 Viewed 1 Downloaded
Title
Categorification of invariants in gauge theory and symplectic geometry
Author(s)
KENJI FUKAYA
Publication Date
2018-03
Journal
JAPANESE JOURNAL OF MATHEMATICS, v.13, no.1, pp.1 - 65
Publisher
SPRINGER
Abstract
This is a mixture of survey article and research announcement. We discuss instanton Floer homology for 3 manifolds with boundary. We also discuss a categorification of the Lagrangian Floer theory using the unobstructed immersed Lagrangian correspondence as a morphism in the category of symplectic manifolds. During the year 1998-2012, those problems have been studied emphasizing the ideas from analysis such as degeneration and adiabatic limit (instanton Floer homology) and strip shrinking (Lagrangian correspondence). Recently we found that replacing those analytic approach by a combination of cobordism type argument and homological algebra, we can resolve various difficulties in the analytic approach. It thus solves various problems and also simplify many of the proofs
URI
https://pr.ibs.re.kr/handle/8788114/4615
ISSN
0289-2316
Appears in Collections:
Center for Geometry and Physics(기하학 수리물리 연구단) > Journal Papers (저널논문)
Files in This Item:
CGP18012_KF_Categorification of invariants in gauge theory and sypmplectic geometry.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse