Unraveling Direct Formation of Hierarchical Zeolite Beta by Dynamic Light Scattering, Small Angle X-ray Scattering, and Liquid and Solid-State NMR: Insights at the Supramolecular Level

Cited 0 time in webofscience Cited 0 time in scopus
92 Viewed 22 Downloaded
Title
Unraveling Direct Formation of Hierarchical Zeolite Beta by Dynamic Light Scattering, Small Angle X-ray Scattering, and Liquid and Solid-State NMR: Insights at the Supramolecular Level
Author(s)
Maria Castro; Pit Losch; Woojin Park; Mohamed Haouas; Francis Taulelle; Claudia Loerbroks; Gert Brabants; Eric Breynaert; Chrisrine E.A. Kirschhock; Ryong Ryoo; Wolfgang Schmidt
Publication Date
2018-04
Journal
CHEMISTRY OF MATERIALS, v.30, no.8, pp.2676 - 2686
Publisher
AMER CHEMICAL SOC
Abstract
A case study on the understanding of the formation of hierarchical Beta zeolites using gemini-type piperidine based multiammonium surfactant (N6-diphe) is reported. Complementary techniques were used to investigate N6-diphe's structure-directing effect at the molecular level. Combining characterization of the resulting zeolite materials with the toolboxes herein developed for studying clear solutions and dense gels discloses self-assembly processes that govern the growth (and growth inhibition) of nano-Beta zeolite crystals. In clear solution, small-angle X-ray scattering and liquid-state NMR provide insights about the formation of nanoparticles and their degree of order. 14N and 1H-DOSY NMR probe the dynamics and mobility of soluble species. In a dense gel, on the other side, 27Al- and 29Si-(MAS) NMR elucidate the varying local connectivity between initial nano-objects and the final solid products. It has been found that cylindrical micelles control the transformation of solubilized silica and alumina during the formation of zeolite nuclei and guide their crystal growth to nano-Beta rods with bimodal mesoporosity. The predominant smaller mesopores (6 to 8 nm) originate from the template's hydrophobic alkyl chains, while larger mesopores (10 to 30 nm) are supposed to result from a spinodal decomposition-type segregation of phases consisting of as-formed hydrophobic zeolite rods and an aqueous solution. © 2018 American Chemical Society
URI
https://pr.ibs.re.kr/handle/8788114/4592
ISSN
0897-4756
Appears in Collections:
Center for Nanomaterials and Chemical Reactions(나노물질 및 화학반응 연구단) > Journal Papers (저널논문)
Files in This Item:
Chem. Mater. 2018, 30, 2676−2686.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse