BROWSE

Related Scientist

Sim, Sang Wan's photo.

Sim, Sang Wan
원자제어 저차원 전자계 연구단
more info

ITEM VIEW & DOWNLOAD

Control over Electron-Phonon Interaction by Dirac Plasmon Engineering in the Bi2Se3 Topological Insulator

Cited 21 time in webofscience Cited 22 time in scopus
965 Viewed 148 Downloaded
Title
Control over Electron-Phonon Interaction by Dirac Plasmon Engineering in the Bi2Se3 Topological Insulator
Author(s)
In C.; Sang Wan Sim; Kim B.; Bae H.; Jung H.; Jang W.; Son M.; Moon J.; Salehi M.; Seo S.Y.; Soon A.; Ham M.-H.; Lee H.; Oh S.; Kim D.; Moon Ho Jo; Choi H.
Subject
phonon, ; plasmon, ; terahertz, ; Topological insulators, ; ultrafast
Publication Date
2018-02
Journal
NANO LETTERS, v.18, no.2, pp.734 - 739
Publisher
AMER CHEMICAL SOC
Abstract
Understanding the mutual interaction between electronic excitations and lattice vibrations is key for understanding electronic transport and optoelectronic phenomena. Dynamic manipulation of such interaction is elusive because it requires varying the material composition on the atomic level. In turn, recent studies on topological insulators (TIs) have revealed the coexistence of a strong phonon resonance and topologically protected Dirac plasmon, both in the terahertz (THz) frequency range. Here, using these intrinsic characteristics of TIs, we demonstrate a new methodology for controlling electron-phonon interaction by lithographically engineered Dirac surface plasmons in the Bi2Se3 TI. Through a series of time-domain and time-resolved ultrafast THz measurements, we show that, when the Dirac plasmon energy is less than the TI phonon energy, the electron-phonon coupling is trivial, exhibiting phonon broadening associated with Landau damping. In contrast, when the Dirac plasmon energy exceeds that of the phonon resonance, we observe suppressed electron-phonon interaction leading to unexpected phonon stiffening. Time-dependent analysis of the Dirac plasmon behavior, phonon broadening, and phonon stiffening reveals a transition between the distinct dynamics corresponding to the two regimes as the Dirac plasmon resonance moves across the TI phonon resonance, which demonstrates the capability of Dirac plasmon control. Our results suggest that the engineering of Dirac plasmons provides a new alternative for controlling the dynamic interaction between Dirac carriers and phonons. © 2018 American Chemical Society.
URI
https://pr.ibs.re.kr/handle/8788114/4448
DOI
10.1021/acs.nanolett.7b03897
ISSN
1530-6984
Appears in Collections:
Center for Artificial Low Dimensional Electronic Systems(원자제어 저차원 전자계 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
조문호_Nano letters_Control over Electron–Phonon Interaction by Dirac Plasmon Engineering in the Bi2Se3 Topological Insulator.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse