CHEMISTRY-A EUROPEAN JOURNAL, v.23, no.68, pp.17179 - 17185
Publisher
WILEY-V C H VERLAG GMBH
Abstract
As viscous hydroxylic organic compounds, diols are of interest for their functional molecular conformation, which is based on inter- and intramolecular hydrogen (H)-bonds. By utilising steady-state electronic and vibrational spectroscopy, time-resolved fluorescence spectroscopy, and computational analyses, we report the association of the hydroxyl groups of diols via intra- or intermolecular H-bonds to enhance their reactivity as a base. Whereas the formation of an intermolecularly H-bonded dimer is requisite for diols of weak intramolecular H-bond to extract a proton from a model strong photoacid, a well-configured single diol molecule with an optimised intramolecular H-bond is revealed to serve as an effective Brønsted base with increased basicity. This observation highlights the collective role of H-bonding in acid–base reactions, and provides mechanistic backgrounds to understand the reactivity of polyols in the acid-catalysed dehydration for the synthesis of cyclic ethers at the molecular level. (c) 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim