BROWSE

Related Scientist

nanomat's photo.

nanomat
나노입자연구단
more info

ITEM VIEW & DOWNLOAD

Sea Sand-Derived Magnesium Silicide as a Reactive Precursor for Silicon-Based Composite Electrodes of Lithium-Ion Battery

DC Field Value Language
dc.contributor.authorJihoon Ahn-
dc.contributor.authorDae-Hyeok Lee-
dc.contributor.authorMin Seok Kang-
dc.contributor.authorKyung-Jae Lee-
dc.contributor.authorJin-Kyu Lee-
dc.contributor.authorYung-Eun Sung-
dc.contributor.authorWon Cheol Yoo-
dc.date.available2018-01-09T07:12:22Z-
dc.date.created2017-09-25-
dc.date.issued2017-08-
dc.identifier.issn0013-4686-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/4205-
dc.description.abstractRecently, it has been clearly elucidated that nanostructured Si-based composites hybridized with protective and conductive materials can present enhanced electrochemical performance as anodes for Liion batteries (LIBs). One of remaining issues is to develop a sustainable and economic method to synthesize these composites on a large scale for industrial applications. Herein, we introduce a modified magnesiothermic reaction route to prepare the aforementioned Si-based composite electrodes using seasand derived Mg2Si as a reactive precursor. Owing to its reducibility and lability, Mg2Si can readily reduce group IVA oxides, such as Na2CO3, SiO2, GeO2, and SnO2, resulting in macroporous Si surrounded by the reduced forms of the counter reactants (C, Si, Ge, and Sn, respectively), some of which can be electrochemically attractive. Notably, the porous Si-based composite can be synthesized by a simple solid state reaction, so simplicity and scalability can be obtained. Also, the sea sand precursor is naturally-abundant; hence this process can be cost-effective, scalable, and sustainable. Porous Si@C composite can be synthesized from the modified magnesiothermic reaction using a sea sand-derived Mg2Si precursor, showing a specific capacity of 1000 mAh/g at 200th cycle. Potentially this process can be used for practical synthesis of Si-based composites. (C) 2017 Elsevier Ltd. All rights reserved-
dc.description.uri1-
dc.language영어-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectMagnesiothermic reduction-
dc.subjectmagnesium silicide-
dc.subjectSi@C-
dc.subjectporous Si-
dc.subjectLi-ion battery-
dc.titleSea Sand-Derived Magnesium Silicide as a Reactive Precursor for Silicon-Based Composite Electrodes of Lithium-Ion Battery-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000406762700098-
dc.identifier.scopusid2-s2.0-85020312092-
dc.identifier.rimsid60213ko
dc.date.tcdate2018-10-01-
dc.contributor.affiliatedAuthorDae-Hyeok Lee-
dc.contributor.affiliatedAuthorKyung-Jae Lee-
dc.contributor.affiliatedAuthorYung-Eun Sung-
dc.identifier.doi10.1016/j.electacta.2017.05.164-
dc.identifier.bibliographicCitationELECTROCHIMICA ACTA, v.245, pp.893 - 901-
dc.citation.titleELECTROCHIMICA ACTA-
dc.citation.volume245-
dc.citation.startPage893-
dc.citation.endPage901-
dc.date.scptcdate2018-10-01-
dc.description.scptc0-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusLONG CYCLE LIFE-
dc.subject.keywordPlusSCALABLE SYNTHESIS-
dc.subject.keywordPlusMETATHESIS REACTION-
dc.subject.keywordPlusANODE MATERIALS-
dc.subject.keywordPlusRICE HUSKS-
dc.subject.keywordPlusSI ANODES-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordAuthorMagnesiothermic reduction-
dc.subject.keywordAuthormagnesium silicide-
dc.subject.keywordAuthorSi@C-
dc.subject.keywordAuthorporous Si-
dc.subject.keywordAuthorLi-ion battery-
Appears in Collections:
Center for Nanoparticle Research(나노입자 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
25. Ahn_et_al-2017-Electrochimica Acta.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse