BROWSE

Related Scientist

nanomat's photo.

nanomat
나노입자연구단
more info

ITEM VIEW & DOWNLOAD

Liquid-cell transmission electron microscopy for tracking self-assembly of nanoparticles

Cited 0 time in webofscience Cited 2 time in scopus
1,002 Viewed 202 Downloaded
Title
Liquid-cell transmission electron microscopy for tracking self-assembly of nanoparticles
Author(s)
Byung Hyo Kim; Junyoung Heo; Lee W.C.; Jungwon Park
Subject
In situ TEM, ; Liquid cell TEM, ; Nanoparticles, ; Self-assembly, ; Solvent-drying, ; Transmission electron microscopy
Publication Date
2017-10
Journal
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, v.2017, no.128, pp.e56335
Publisher
JOURNAL OF VISUALIZED EXPERIMENTS
Abstract
Drying a nanoparticle dispersion is a versatile way to create self-assembled structures of nanoparticles, but the mechanism of this process is not fully understood. We have traced the trajectories of individual nanoparticles using liquid-cell transmission electron microscopy (TEM) to investigate the mechanism of the assembly process. Herein, we present the protocols used for liquid-cell TEM studies of the self-assembly mechanism. First, we introduce the detailed synthetic protocols used to produce uniformly sized platinum and lead selenide nanoparticles. Next, we present the microfabrication processes used to produce liquid cells with silicon nitride or silicon windows and then describe the loading and imaging procedures of the liquid-cell TEM technique. Several notes are included to provide helpful tips for the entire process, including how to manage the fragile cell windows. The individual motions of nanoparticles tracked by liquid-cell TEM revealed that changes in the solvent boundaries caused by evaporation affected the self-assembly process of nanoparticles. The solvent boundaries drove nanoparticles to primarily form amorphous aggregates, followed by flattening of the aggregates to produce a 2-dimensional (2D) self-assembled structure. These behaviors are also observed for different nanoparticle types and different liquid-cell compositions. © 2017 Journal of Visualized Experiments
URI
https://pr.ibs.re.kr/handle/8788114/4170
DOI
10.3791/56335
ISSN
1940-087X
Appears in Collections:
Center for Nanoparticle Research(나노입자 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
jove-protocol-56335-liquid-cell-transmission-electron-microscopy-for-trackin.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse