Giant Peak Voltage of Thermopower Waves Driven by the Chemical Potential Gradient of Single-Crystalline Bi2Te3
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Swati Singh | - |
dc.contributor.author | Hyeona Mun | - |
dc.contributor.author | Sanghoon Lee | - |
dc.contributor.author | Sung Wng Kim | - |
dc.contributor.author | Seunghyun Baik | - |
dc.date.available | 2017-10-26T00:43:10Z | - |
dc.date.created | 2017-09-25 | - |
dc.date.issued | 2017-09 | - |
dc.identifier.issn | 0935-9648 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/3938 | - |
dc.description.abstract | The self-propagating exothermic chemical reaction with transient thermo-voltage, known as the thermopower wave, has received considerable attention recently. A greater peak voltage and specific power are still demanded, and materials with greater Seebeck coefficients have been previously investigated. However, this study employs an alternative mechanism of transient chemical potential gradient providing an unprecedentedly high peak voltage (maximum: 8 V; average: 2.3 V) and volume-specific power (maximum: 0.11 W mm-3; average: 0.04 W mm(-3)) using n-type single-crystalline Bi2Te3 substrates. A mixture of nitrocellulose and sodium azide is used as a fuel, and ultraviolet photoelectron spectroscopy reveals a significant downshift in Fermi energy (approximate to 5.09 eV) of the substrate by p-doping of the fuel. The induced electrical potential by thermopower waves has two distinct sources: the Seebeck effect and the transient chemical potential gradient. Surprisingly, the Seebeck effect contribution is less than 2.5% (approximate to 201 mV) of the maximum peak voltage. The right combination of substrate, fuel doping, and anisotropic substrate geometry results in an order of magnitude greater transient chemical potential gradient (approximate to 5.09 eV) upon rapid removal of fuel by exothermic chemical reaction propagation. The role of fuel doping and chemical potential gradient can be viewed as a key mechanism for enhanced heat to electric conversion performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | WILEY-V C H VERLAG GMBH | - |
dc.subject | chemical potential | - |
dc.subject | doping | - |
dc.subject | exothermic reaction | - |
dc.subject | single-crystal Bi2Te3 | - |
dc.subject | thermopower waves | - |
dc.title | Giant Peak Voltage of Thermopower Waves Driven by the Chemical Potential Gradient of Single-Crystalline Bi2Te3 | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000408933600025 | - |
dc.identifier.scopusid | 2-s2.0-85021359890 | - |
dc.identifier.rimsid | 60134 | - |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Sung Wng Kim | - |
dc.contributor.affiliatedAuthor | Seunghyun Baik | - |
dc.identifier.doi | 10.1002/adma.201701988 | - |
dc.identifier.bibliographicCitation | ADVANCED MATERIALS, v.29, no.33, pp.1701988 | - |
dc.citation.title | ADVANCED MATERIALS | - |
dc.citation.volume | 29 | - |
dc.citation.number | 33 | - |
dc.citation.startPage | 1701988 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 2 | - |
dc.description.scptc | 2 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | THERMOELECTRIC-POWER WAVES | - |
dc.subject.keywordPlus | ENERGY GENERATION | - |
dc.subject.keywordPlus | BISMUTH TELLURIDE | - |
dc.subject.keywordPlus | CARBON NANOTUBES | - |
dc.subject.keywordPlus | THIN-FILMS | - |
dc.subject.keywordPlus | COMPOSITES | - |
dc.subject.keywordPlus | COMBUSTION | - |
dc.subject.keywordPlus | ALLOYS | - |
dc.subject.keywordPlus | SB2TE3 | - |
dc.subject.keywordAuthor | chemical potential | - |
dc.subject.keywordAuthor | doping | - |
dc.subject.keywordAuthor | exothermic reaction | - |
dc.subject.keywordAuthor | single-crystal Bi2Te3 | - |
dc.subject.keywordAuthor | thermopower waves | - |