Role of graphene in reducing fatigue damage in Cu/Gr nanolayered composite
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Byungil Hwang | - |
dc.contributor.author | Wonsik Kim | - |
dc.contributor.author | Jaemin Kim | - |
dc.contributor.author | Subin Lee | - |
dc.contributor.author | Seoyoen Lim | - |
dc.contributor.author | Sangmin Kim | - |
dc.contributor.author | Sang Ho Oh | - |
dc.contributor.author | Seunghwa Ryu | - |
dc.contributor.author | Seung Min Han | - |
dc.date.available | 2017-10-13T06:22:46Z | - |
dc.date.created | 2017-08-29 | - |
dc.date.issued | 2017-08 | - |
dc.identifier.issn | 1530-6984 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/3834 | - |
dc.description.abstract | Nanoscale metal/graphene nanolayered composite is known to have ultrahigh strength as the graphene effectively blocks dislocations from penetrating through the metal/graphene interface. The same graphene interface, which has a strong sp2 bonding, can simultaneously serve as an effective interface for deflecting the fatigue cracks that are generated under cyclic bendings. In this study, Cu/Gr composite with repeat layer spacing of 100 nm was tested for bending fatigue at 1.6% and 3.1% strain up to 1,000,000 cycles that showed for the first time a 5-6 times enhancement in fatigue resistance compared to the conventional Cu thin film. Fatigue cracks that are generated within the Cu layer were stopped by the graphene interface, which are evidenced by cross-sectional scanning electron microscopy and transmission electron microscopy images. Molecular dynamics simulations for uniaxial tension of Cu/Gr showed limited accumulation of dislocations at the film/substrate interface, which makes the fatigue crack formation and propagation through thickness of the film difficult in this materials system. © 2017 American Chemical Society | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | AMER CHEMICAL SOC | - |
dc.subject | bending | - |
dc.subject | crack | - |
dc.subject | Cu | - |
dc.subject | fatigue | - |
dc.subject | graphene | - |
dc.subject | nanolayered composite | - |
dc.title | Role of graphene in reducing fatigue damage in Cu/Gr nanolayered composite | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000407540300028 | - |
dc.identifier.scopusid | 2-s2.0-85027233936 | - |
dc.identifier.rimsid | 60046 | - |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Subin Lee | - |
dc.identifier.doi | 10.1021/acs.nanolett.7b01431 | - |
dc.identifier.bibliographicCitation | NANO LETTERS, v.17, no.8, pp.4740 - 4745 | - |
dc.citation.title | NANO LETTERS | - |
dc.citation.volume | 17 | - |
dc.citation.number | 8 | - |
dc.citation.startPage | 4740 | - |
dc.citation.endPage | 4745 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 3 | - |
dc.description.scptc | 3 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | INTEGRATED-CIRCUITS | - |
dc.subject.keywordPlus | LENGTH-SCALE | - |
dc.subject.keywordPlus | ELECTRONICS | - |
dc.subject.keywordPlus | COPPER | - |
dc.subject.keywordPlus | FILMS | - |
dc.subject.keywordPlus | CU | - |
dc.subject.keywordPlus | MULTILAYERS | - |
dc.subject.keywordPlus | MECHANISMS | - |
dc.subject.keywordPlus | STRENGTH | - |
dc.subject.keywordPlus | BEHAVIOR | - |
dc.subject.keywordAuthor | Cu | - |
dc.subject.keywordAuthor | graphene | - |
dc.subject.keywordAuthor | nanolayered composite | - |
dc.subject.keywordAuthor | crack | - |
dc.subject.keywordAuthor | fatigue | - |
dc.subject.keywordAuthor | bending | - |