BROWSE

Related Scientist

nanomat's photo.

nanomat
나노입자연구단
more info

ITEM VIEW & DOWNLOAD

Ag/Ni Metallization Bilayer: A Functional Layer for Highly Efficient Polycrystalline SnSe Thermoelectric Modules

DC Field Value Language
dc.contributor.authorSANG HYUN PARK-
dc.contributor.authorYOUNGHWAN JIN-
dc.contributor.authorKYUNGHAN AHN-
dc.contributor.authorIn Chung-
dc.contributor.authorCHUNG-YUL YOO-
dc.date.available2017-05-19T01:13:07Z-
dc.date.created2017-04-05-
dc.date.issued2017-02-
dc.identifier.issn0361-5235-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/3477-
dc.description.abstractThe structural and electrical characteristics of Ag/Ni bilayer metallization on polycrystalline thermoelectric SnSe were investigated. Two difficulties with thermoelectric SnSe metallization were identified for Ag and Ni single layers: Sn diffusion into the Ag metallization layer and unexpected cracks in the Ni metallization layer. The proposed Ag/Ni bilayer was prepared by hot-pressing, demonstrating successful metallization on the SnSe surface without interfacial cracks or elemental penetration into the metallization layer. Structural analysis revealed that the Ni layer reacts with SnSe, forming several crystalline phases during metallization that are beneficial for reducing contact resistance. Detailed investigation of the Ni/SnSe interface layer confirms columnar Ni-Sn intermetallic phases [(Ni3Sn and Ni3Sn2) and Ni5.63SnSe2] that suppress Sn diffusion into the Ag layer. Electrical specific-contact resistivity (5.32 9 104 X cm2) of the Ag/Ni bilayer requires further modification for development of high-efficiency polycrystalline SnSe thermoelectric modules. (c) 2016 The Minerals, Metals & Materials Society-
dc.description.uri1-
dc.language영어-
dc.publisherSPRINGER-
dc.subjectThermoelectric, SnSe, interfaces, contact resistivity-
dc.titleAg/Ni Metallization Bilayer: A Functional Layer for Highly Efficient Polycrystalline SnSe Thermoelectric Modules-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000392291200020-
dc.identifier.scopusid2-s2.0-84990871447-
dc.identifier.rimsid59125ko
dc.date.tcdate2018-10-01-
dc.contributor.affiliatedAuthorIn Chung-
dc.identifier.doi10.1007/s11664-016-4972-9-
dc.identifier.bibliographicCitationJOURNAL OF ELECTRONIC MATERIALS, v.46, no.2, pp.848 - 855-
dc.citation.titleJOURNAL OF ELECTRONIC MATERIALS-
dc.citation.volume46-
dc.citation.number2-
dc.citation.startPage848-
dc.citation.endPage855-
dc.date.scptcdate2018-10-01-
dc.description.wostc4-
dc.description.scptc4-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Appears in Collections:
Center for Nanoparticle Research(나노입자 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
JEM(Ag_Ni metallization bilayer).pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse