ZnTe alloying effect on enhanced thermoelectric properties of p-type PbTe
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ahn K. | - |
dc.contributor.author | Hocheol Shin | - |
dc.contributor.author | Im J. | - |
dc.contributor.author | Park S.H. | - |
dc.contributor.author | In Chung | - |
dc.date.available | 2017-05-19T01:12:53Z | - |
dc.date.created | 2017-02-24 | - |
dc.date.issued | 2017-02 | - |
dc.identifier.issn | 1944-8244 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/3462 | - |
dc.description.abstract | We investigate the effect of ZnTe incorporation on PbTe to enhance thermoelectric performance. We report structural, microscopic, and spectroscopic characterizations, ab initio theoretical calculations, and thermoelectric transport properties of Pb0.985Na0.015Te-x% ZnTe (x = 0, 1, 2, 4). We find that the solid solubility limit of ZnTe in PbTe is less than 1 mol %. The introduction of 2% ZnTe in p-type Pb0.985Na0.015Te reduces the lattice thermal conductivity through the ZnTe precipitates at the microscale. Consequently, a maximum thermoelectric figure of merit (ZT) of 1.73 at 700 K is achieved for the spark plasma-sintered Pb0.985Na0.015Te-2% ZnTe, which arises from a decreased lattice thermal conductivity of ∼0.69 W m-1 K-1 at ∼700 K in comparison with Pb0.985Na0.015Te. © 2017 American Chemical Society | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | AMER CHEMICAL SOC | - |
dc.subject | Alloying | - |
dc.subject | Hole doping | - |
dc.subject | PbTe | - |
dc.subject | Renewable energy | - |
dc.subject | Thermoelectric | - |
dc.subject | ZnTe | - |
dc.title | ZnTe alloying effect on enhanced thermoelectric properties of p-type PbTe | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000393355900059 | - |
dc.identifier.scopusid | 2-s2.0-85011649846 | - |
dc.identifier.rimsid | 58860 | - |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Hocheol Shin | - |
dc.contributor.affiliatedAuthor | In Chung | - |
dc.identifier.doi | 10.1021/acsami.6b15295 | - |
dc.identifier.bibliographicCitation | ACS APPLIED MATERIALS & INTERFACES, v.9, no.4, pp.3766 - 3773 | - |
dc.citation.title | ACS APPLIED MATERIALS & INTERFACES | - |
dc.citation.volume | 9 | - |
dc.citation.number | 4 | - |
dc.citation.startPage | 3766 | - |
dc.citation.endPage | 3773 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 4 | - |
dc.description.scptc | 4 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordAuthor | Alloying | - |
dc.subject.keywordAuthor | Hole doping | - |
dc.subject.keywordAuthor | PbTe | - |
dc.subject.keywordAuthor | Renewable energy | - |
dc.subject.keywordAuthor | Thermoelectric | - |
dc.subject.keywordAuthor | ZnTe | - |