A molecular approach to an electrocatalytic hydrogen evolution reaction on single-layer graphene
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sohyeon Seo | - |
dc.contributor.author | Keunsik Lee | - |
dc.contributor.author | Misook Min | - |
dc.contributor.author | Yunhee Cho | - |
dc.contributor.author | Meeree Kim | - |
dc.contributor.author | Hyoyoung Lee | - |
dc.date.available | 2017-05-19T01:12:41Z | - |
dc.date.created | 2017-04-24 | - |
dc.date.issued | 2017-03 | - |
dc.identifier.issn | 2040-3364 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/3453 | - |
dc.description.abstract | A major challenge in the development of electrocatalysts is to determine a detailed catalysis mechanism on a molecular level for enhancing catalytic activity. Here, we present bottom-up studies for an electrocatalytic hydrogen evolution reaction (HER) process through molecular activation to systematically control surface catalytic activity corresponding to an interfacial charge transfer in a porphyrin monolayer on inactive graphene. The two-dimensional (2D) assembly of porphyrins that create homogeneous active sites (e.g., electronegative tetrapyrroles (N4)) on graphene showed structural stability against electrocatalytic reactions and enhanced charge transfer at the graphene-liquid interface. Performance operations of the graphene field effect transistor (FET) were an effective method to analyse the interfacial charge transfer process associated with information about the chemical nature of the catalytic components. Electronegative pristine porphyrin or Pt-porphyrin networks, where intermolecular hydrogen bonding functioned, showed larger interfacial charge transfers and higher HER performance than Ni-, or Zn-porphyrin. A process to create surface electronegativity by either central N-4 or metal (M)-N-4 played an important role in the electrocatalytic reaction. These findings will contribute to an in-depth understanding at the molecular level for the synergetic effects of molecular structures on the active sites of electrocatalysts toward HER | - |
dc.language | 영어 | - |
dc.publisher | ROYAL SOC CHEMISTRY | - |
dc.title | A molecular approach to an electrocatalytic hydrogen evolution reaction on single-layer graphene | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000397126000032 | - |
dc.identifier.scopusid | 2-s2.0-85015785103 | - |
dc.identifier.rimsid | 59243 | ko |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Sohyeon Seo | - |
dc.contributor.affiliatedAuthor | Keunsik Lee | - |
dc.contributor.affiliatedAuthor | Hyoyoung Lee | - |
dc.identifier.doi | 10.1039/c6nr09428g | - |
dc.identifier.bibliographicCitation | NANOSCALE, v.9, no.11, pp.3969 - 3979 | - |
dc.relation.isPartOf | NANOSCALE | - |
dc.citation.title | NANOSCALE | - |
dc.citation.volume | 9 | - |
dc.citation.number | 11 | - |
dc.citation.startPage | 3969 | - |
dc.citation.endPage | 3979 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 4 | - |
dc.description.scptc | 4 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.subject.keywordPlus | FIELD-EFFECT TRANSISTORS | - |
dc.subject.keywordPlus | NITROGEN-DOPED CARBON | - |
dc.subject.keywordPlus | SUPRAMOLECULAR ASSEMBLIES | - |
dc.subject.keywordPlus | OXYGEN REDUCTION | - |
dc.subject.keywordPlus | WORK-FUNCTION | - |
dc.subject.keywordPlus | PORPHYRINS | - |
dc.subject.keywordPlus | METALLOPORPHYRINS | - |
dc.subject.keywordPlus | SURFACE | - |
dc.subject.keywordPlus | NICKEL | - |
dc.subject.keywordPlus | ELECTROCHEMISTRY | - |