BROWSE

Related Scientist

cmcm's photo.

cmcm
다차원탄소재료연구단
more info

ITEM VIEW & DOWNLOAD

Hexagonal Boron Nitride/Au Substrate for Manipulating Surface Plasmon and Enhancing Capability of Surface-Enhanced Raman Spectroscopy

Cited 32 time in webofscience Cited 31 time in scopus
931 Viewed 177 Downloaded
Title
Hexagonal Boron Nitride/Au Substrate for Manipulating Surface Plasmon and Enhancing Capability of Surface-Enhanced Raman Spectroscopy
Author(s)
Gwangwoo Kim; Minsu Kim; Chohee Hyun; Seokmo Hong; Kyung Yeol Ma; Hyeon Suk Shin; Hyunseob Lim
Subject
gold nanoparticles, ; hexagonal boron nitride, ; hot spot, ; insulating layer, ; surface-enhanced Raman spectroscopy
Publication Date
2016-12
Journal
ACS NANO, v.10, no.12, pp.11156 - 11162
Publisher
AMER CHEMICAL SOC
Abstract
We report on an insulating two-dimensional material, hexagonal boron nitride (h-BN), which can be used as an effective wrapping layer for surface-enhanced Raman spectroscopy (SERS) substrates. This material exhibits outstanding characteristics such as its crystallinity, impermeability, and thermal conductance. Improved SERS sensitivity is confirmed for Au substrates wrapped with h-BN, the mechanism of which is investigated via h-BN thickness-dependent experiments combined with theoretical simulations. The investigations reveal that a stronger electromagnetic field can be generated at the narrowed gap of the h-BN surface, which results in higher Raman sensitivity. Moreover, the h-BN-wrapped Au substrate shows extraordinary stability against photothermal and oxidative damages. We also describe its capability to detect specific chemicals that are difficult to analyze using conventional SERS substrates. We believe that this concept of using an h-BN insulating layer to protect metallic or plasmonic materials will be widely used not only in the field of SERS but also in the broader study of plasmonic and optoelectronic devices. © 2016 American Chemical Society
URI
https://pr.ibs.re.kr/handle/8788114/3333
DOI
10.1021/acsnano.6b06153
ISSN
1936-0851
Appears in Collections:
Center for Multidimensional Carbon Materials(다차원 탄소재료 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
1. acsnano.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse