Rational design of redox mediators for advanced Li–O2 batteriesHighly Cited Paper
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hee-Dae Lim | - |
dc.contributor.author | Byungju Lee | - |
dc.contributor.author | Yongping Zheng | - |
dc.contributor.author | Jihyun Hong | - |
dc.contributor.author | Jinsoo Kim | - |
dc.contributor.author | Hyeokjo Gwon | - |
dc.contributor.author | Youngmin Ko | - |
dc.contributor.author | Minah Lee | - |
dc.contributor.author | Kyeongjae Cho | - |
dc.contributor.author | Kisuk Kang | - |
dc.date.available | 2017-01-20T08:32:20Z | - |
dc.date.created | 2017-01-16 | - |
dc.date.issued | 2016-05 | - |
dc.identifier.issn | 2058-7546 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/3301 | - |
dc.description.abstract | The discovery of eective catalysts is an important step towards achieving Li–O2 batteries with long cycle life and high round-trip eciency. Soluble-type catalysts or redox mediators (RMs) possess great advantages over conventional solid catalysts, generally exhibiting much higher eciency. Here, we select a series of organic RM candidates as a model system to identify the key descriptor in determining the catalytic activities and stabilities in Li–O2 cells. It i revealed that the level of ionization energies, readily available parameters from a database of the molecules, can serve such a role when comparing with the formation energy of Li2O2 and the highest occupied molecular orbital energy of the electrolyte. It is demonstrated that they are critical in reducing the overpotential and improving the stability of Li–O2 cells, respectively. Accordingly, we propose a general principle for designing feasible catalysts and report a RM, dimethylphenazine, with a remarkably low overpotential and high stability. © 2016 Macmillan Publishers Limited. | - |
dc.language | 영어 | - |
dc.publisher | NATURE PUBLISHING GROUP | - |
dc.title | Rational design of redox mediators for advanced Li–O2 batteries | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000394128600001 | - |
dc.identifier.scopusid | 2-s2.0-85017102374 | - |
dc.identifier.rimsid | 58348 | ko |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Kisuk Kang | - |
dc.identifier.doi | 10.1038/NENERGY.2016.66 | - |
dc.identifier.bibliographicCitation | NATURE ENERGY, v.1, pp.16066 | - |
dc.relation.isPartOf | NATURE ENERGY | - |
dc.citation.title | NATURE ENERGY | - |
dc.citation.volume | 1 | - |
dc.citation.startPage | 16066 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 84 | - |
dc.description.scptc | 76 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.subject.keywordPlus | LITHIUM-OXYGEN BATTERIES | - |
dc.subject.keywordPlus | GAUSSIAN-BASIS SETS | - |
dc.subject.keywordPlus | AIR BATTERIES | - |
dc.subject.keywordPlus | IONIZATION POTENTIALS | - |
dc.subject.keywordPlus | ELECTRON-SPECTROSCOPY | - |
dc.subject.keywordPlus | SOLVENT STABILITY | - |
dc.subject.keywordPlus | ATOMS LI | - |
dc.subject.keywordPlus | SPECTRA | - |
dc.subject.keywordPlus | RECHARGEABILITY | - |
dc.subject.keywordPlus | CATALYST | - |