BROWSE

Related Scientist

cinap's photo.

cinap
나노구조물리연구단
more info

ITEM VIEW & DOWNLOAD

Chemically modulated graphene quantum dot for tuning the photoluminescence as novel sensory probe

Cited 16 time in webofscience Cited 16 time in scopus
1,197 Viewed 373 Downloaded
Title
Chemically modulated graphene quantum dot for tuning the photoluminescence as novel sensory probe
Author(s)
Eunhee Hwang; Hee Min Hwang; Yonghun Shin; Yeoheung Yoon; Hanleem Lee; Junghee Yang; Sora Bak; Hyoyoung Lee
Publication Date
2016-12
Journal
SCIENTIFIC REPORTS, v.6, pp.39448
Publisher
NATURE PUBLISHING GROUP
Abstract
A band gap tuning of environmental-friendly graphene quantum dot (GQD) becomes a keen interest for novel applications such as photoluminescence (PL) sensor. Here, for tuning the band gap of GQD, a hexafluorohydroxypropanyl benzene (HFHPB) group acted as a receptor of a chemical warfare agent was chemically attached on the GQD via the diazonium coupling reaction of HFHPB diazonium salt, providing new HFHPB-GQD material. With a help of the electron withdrawing HFHPB group, the energy band gap of the HFHPB-GQD was widened and its PL decay life time decreased. As designed, after addition of dimethyl methyl phosphonate (DMMP), the PL intensity of HFHPB-GQD sensor sharply increased up to approximately 200% through a hydrogen bond with DMMP. The fast response and short recovery time was proven by quartz crystal microbalance (QCM) analysis. This HFHPB-GQD sensor shows highly sensitive to DMMP in comparison with GQD sensor without HFHPB and graphene. In addition, the HFHPB-GQD sensor showed high selectivity only to the phosphonate functional group among many other analytes and also stable enough for real device applications. Thus, the tuning of the band gap of the photoluminescent GQDs may open up new promising strategies for the molecular detection of target substrates. © The Author(s) 2016
URI
https://pr.ibs.re.kr/handle/8788114/3210
DOI
10.1038/srep39448
ISSN
2045-2322
Appears in Collections:
Center for Integrated Nanostructure Physics(나노구조물리 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
Chemically modulated_Hyoyoung Lee_Scientific Reports.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse