Recent Progress in Electrode Materials for Sodium-Ion BatteriesHighly Cited Paper
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hyungsub Kim | - |
dc.contributor.author | Kim, H | - |
dc.contributor.author | Ding, Z | - |
dc.contributor.author | Lee, MH | - |
dc.contributor.author | Lim, K | - |
dc.contributor.author | Gabin Yoon | - |
dc.contributor.author | Kisuk Kang | - |
dc.date.available | 2017-01-02T07:17:35Z | - |
dc.date.created | 2016-12-19 | - |
dc.date.issued | 2016-10 | - |
dc.identifier.issn | 1614-6832 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/3113 | - |
dc.description.abstract | Grid-scale energy storage systems (ESSs) that can connect to sustainable energy resources have received great attention in an effort to satisfy ever-growing energy demands. Although recent advances in Li-ion battery (LIB) technology have increased the energy density to a level applicable to grid-scale ESSs, the high cost of Li and transition metals have led to a search for lower-cost battery system alternatives. Based on the abundance and accessibility of Na and its similar electrochemistry to the well-established LIB technology, Na-ion batteries (NIBs) have attracted significant attention as an ideal candidate for grid-scale ESSs. Since research on NIB chemistry resurged in 2010, various positive and negative electrode materials have been synthesized and evaluated for NIBs. Nonetheless, studies on NIB chemistry are still in their infancy compared with LIB technology, and further improvements are required in terms of energy, power density, and electrochemical stability for commercialization. Most recent progress on electrode materials for NIBs, including the discovery of new electrode materials and their Na storage mechanisms, is briefly reviewed. In addition, efforts to enhance the electrochemical properties of NIB electrode materials as well as the challenges and perspectives involving these materials are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | WILEY-V C H VERLAG GMBH | - |
dc.title | Recent Progress in Electrode Materials for Sodium-Ion Batteries | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000387134800011 | - |
dc.identifier.scopusid | 2-s2.0-84978828830 | - |
dc.identifier.rimsid | 57971 | - |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Hyungsub Kim | - |
dc.contributor.affiliatedAuthor | Gabin Yoon | - |
dc.contributor.affiliatedAuthor | Kisuk Kang | - |
dc.identifier.doi | 10.1002/aenm.201600943 | - |
dc.identifier.bibliographicCitation | ADVANCED ENERGY MATERIALS, v.6, no.19, pp.1600943 | - |
dc.citation.title | ADVANCED ENERGY MATERIALS | - |
dc.citation.volume | 6 | - |
dc.citation.number | 19 | - |
dc.citation.startPage | 1600943 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 202 | - |
dc.description.scptc | 226 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | HIGH-PERFORMANCE ANODE | - |
dc.subject.keywordPlus | X-RAY-DIFFRACTION | - |
dc.subject.keywordPlus | LONG-CYCLE-LIFE | - |
dc.subject.keywordPlus | RECHARGEABLE LITHIUM BATTERIES | - |
dc.subject.keywordPlus | ELECTRICAL ENERGY-STORAGE | - |
dc.subject.keywordPlus | HIGH-CAPACITY CATHODE | - |
dc.subject.keywordPlus | IMPROVED ELECTROCHEMICAL PERFORMANCE | - |
dc.subject.keywordPlus | GRAPHITE-INTERCALATION COMPOUNDS | - |
dc.subject.keywordPlus | SINGLE-CRYSTALLINE NA0.44MNO2 | - |
dc.subject.keywordPlus | CARBON-COATED NA3V2(PO4)(3) | - |