Large-Scale Graphene on Hexagonal-BN Hall Elements: Prediction of Sensor Performance without Magnetic Field
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Min-Kyu Joo | - |
dc.contributor.author | Kim J. | - |
dc.contributor.author | Ji-Hoon Park | - |
dc.contributor.author | Van Luan Nguyen | - |
dc.contributor.author | Kim K.K. | - |
dc.contributor.author | Young Hee Lee | - |
dc.contributor.author | Suh D. | - |
dc.date.available | 2016-10-26T06:58:12Z | - |
dc.date.created | 2016-10-17 | - |
dc.date.issued | 2016-09 | - |
dc.identifier.issn | 1936-0851 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/2877 | - |
dc.description.abstract | A graphene Hall element (GHE) is an optimal system for a magnetic sensor because of its perfect two-dimensional (2-D) structure, high carrier mobility, and widely tunable carrier concentration. Even though several proof-of-concept devices have been proposed, manufacturing them by mechanical exfoliation of 2-D material or electron-beam lithography is of limited feasibility. Here, we demonstrate a high quality GHE array having a graphene on hexagonal-BN (h-BN) heterostructure, fabricated by photolithography and large-area 2-D materials grown by chemical vapor deposition techniques. A superior performance of GHE was achieved with the help of a bottom h-BN layer, and showed a maximum current-normalized sensitivity of 1986 V/AT, a minimum magnetic resolution of 0.5 mG/Hz0.5 at f = 300 Hz, and an effective dynamic range larger than 74 dB. Furthermore, on the basis of a thorough understanding of the shift of charge neutrality point depending on various parameters, an analytical model that predicts the magnetic sensor operation of a GHE from its transconductance data without magnetic field is proposed, simplifying the evaluation of each GHE design. These results demonstrate the feasibility of this highly performing graphene device using large-scale manufacturing-friendly fabrication methods. © 2016 American Chemical Society | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | AMER CHEMICAL SOC | - |
dc.subject | chemical vapor deposition | - |
dc.subject | graphene | - |
dc.subject | graphene Hall element | - |
dc.subject | hexagonal boron nitride | - |
dc.subject | large-area graphene device | - |
dc.subject | magnetic field sensor | - |
dc.title | Large-Scale Graphene on Hexagonal-BN Hall Elements: Prediction of Sensor Performance without Magnetic Field | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000384399300076 | - |
dc.identifier.scopusid | 2-s2.0-84989184281 | - |
dc.identifier.rimsid | 57452 | ko |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Min-Kyu Joo | - |
dc.contributor.affiliatedAuthor | Ji-Hoon Park | - |
dc.contributor.affiliatedAuthor | Van Luan Nguyen | - |
dc.contributor.affiliatedAuthor | Young Hee Lee | - |
dc.identifier.doi | 10.1021/acsnano.6b04547 | - |
dc.identifier.bibliographicCitation | ACS NANO, v.10, no.9, pp.8803 - 8811 | - |
dc.citation.title | ACS NANO | - |
dc.citation.volume | 10 | - |
dc.citation.number | 9 | - |
dc.citation.startPage | 8803 | - |
dc.citation.endPage | 8811 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 6 | - |
dc.description.scptc | 7 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | BORON-NITRIDE | - |
dc.subject.keywordPlus | DEVICES | - |
dc.subject.keywordPlus | NOISE | - |
dc.subject.keywordPlus | HETEROSTRUCTURES | - |
dc.subject.keywordPlus | GROWTH | - |
dc.subject.keywordPlus | MODEL | - |
dc.subject.keywordPlus | FOIL | - |
dc.subject.keywordAuthor | graphene | - |
dc.subject.keywordAuthor | hexagonal boron nitride | - |
dc.subject.keywordAuthor | magnetic field sensor | - |
dc.subject.keywordAuthor | large-area graphene device | - |
dc.subject.keywordAuthor | graphene Hall element | - |
dc.subject.keywordAuthor | chemical vapor deposition | - |