Vibrational solvatochromism. III. Rigorous treatment of the dispersion interaction contribution

Cited 16 time in webofscience Cited 0 time in scopus
171 Viewed 46 Downloaded
Title
Vibrational solvatochromism. III. Rigorous treatment of the dispersion interaction contribution
Author(s)
Bartosz Błasiak; Minhaeng Cho
Publication Date
2015-10
Journal
JOURNAL OF CHEMICAL PHYSICS, v.143, no.16, pp.164111 -
Publisher
AMER INST PHYSICS
Abstract
A rigorous first principles theory of vibrational solvatochromism including the intermolecular dispersion interaction, which is based on the effective fragment potential method, is developed. The present theory is an extended version of our previous vibrational solvatochromism model that took into account the Coulomb, exchange-repulsion, and induction interactions. We show that the frequency shifts of the amide I mode of N-methylacetamide in H2O and CDCl3, when combined with molecular dynamics simulations, can be quantitatively reproduced by the theory, which indicates that the dispersion interaction contribution to the vibrational frequency shift is not always negligibly small. Nonetheless, the reason that the purely Coulombic interaction model for vibrational solvatochromism works well for describing amide I mode frequency shifts in polar solvents is because the electrostatic contribution is strong and highly sensitive to the relative orientation of surrounding solvent molecules, which is in stark contrast with polarization, dispersion, and exchange-repulsion contributions. It is believed that the theory presented and discussed here will be of great use in quantitatively describing vibrational solvatochromism and electrochromism of infrared probes in not just polar solvent environments but also in biopolymers such as proteins. © 2015 AIP Publishing LLC
URI
https://pr.ibs.re.kr/handle/8788114/2295
ISSN
0021-9606
Appears in Collections:
Center for Molecular Spectroscopy and Dynamics(분자 분광학 및 동력학 연구단) > Journal Papers (저널논문)
Files in This Item:
Vibrational solvatochromism. III._Bartek.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse