Achieving outstanding Li+-ORR and -OER activities via edge- and corner-embedded bimetallic nanocubes for rechargeable Li-O2 batteries
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jung, J. | - |
dc.contributor.author | Song, K. | - |
dc.contributor.author | Bae, Y. | - |
dc.contributor.author | Choi, S.-I. | - |
dc.contributor.author | Park, M. | - |
dc.contributor.author | Cho, E. | - |
dc.contributor.author | Kisuk Kang | - |
dc.contributor.author | Kang, Y.-M. | - |
dc.date.available | 2016-01-25T00:12:00Z | - |
dc.date.created | 2015-11-16 | - |
dc.date.issued | 2015-11 | - |
dc.identifier.issn | 2211-2855 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/2261 | - |
dc.description.abstract | The shape of catalysts has been regarded as a crucial physical factor to determine its catalytic activity in various applications. However, very little is known about the catalyst shape-dependent activities for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in the cathode of Li-O2 battery. Hence, we synthesized Pt3Co nanocube (NC) for the comparison with Pt3Co nanoparticle (NP) by regulating the ratio of reducer (hexadecanediol; HDD) amount. Consequently, we could report on very high capacity (10,000mAh gcarbon -1), superb rate capability (3500mAh gcarbon -1 at 2000mA gcarbon -1) and high reversibility of Lithium-O2 batteries using Pt3Co NC catalysts. Particularly, the Pt3Co NCs catalyst exhibited a low OER potential of 3.1V, providing the highest round trip efficiency of ~86.5% at a current density of 200mA gcarbon -1, which is much superior to NPs catalyst. © 2015 Elsevier Ltd | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | Elsevier BV | - |
dc.subject | Bimetallic nanocubes | - |
dc.subject | Electrocatalysts | - |
dc.subject | Li-O2 batteries | - |
dc.subject | Oxygen evolution reactions | - |
dc.subject | Oxygen reduction reactions | - |
dc.title | Achieving outstanding Li+-ORR and -OER activities via edge- and corner-embedded bimetallic nanocubes for rechargeable Li-O2 batteries | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000369918500008 | - |
dc.identifier.scopusid | 2-s2.0-84944876788 | - |
dc.identifier.rimsid | 21458 | ko |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Kisuk Kang | - |
dc.identifier.doi | 10.1016/j.nanoen.2015.09.011 | - |
dc.identifier.bibliographicCitation | NANO ENERGY, v.18, pp.71 - 80 | - |
dc.citation.title | NANO ENERGY | - |
dc.citation.volume | 18 | - |
dc.citation.startPage | 71 | - |
dc.citation.endPage | 80 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 11 | - |
dc.description.scptc | 10 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | LITHIUM-OXYGEN BATTERIES | - |
dc.subject.keywordPlus | METAL-AIR BATTERIES | - |
dc.subject.keywordPlus | ENHANCED CATALYSIS | - |
dc.subject.keywordPlus | CATHODE CATALYSTS | - |
dc.subject.keywordPlus | OXIDE CATALYSTS | - |
dc.subject.keywordPlus | RATE CAPABILITY | - |
dc.subject.keywordPlus | HIGH-CAPACITY | - |
dc.subject.keywordPlus | REDUCTION | - |
dc.subject.keywordPlus | NANOPARTICLES | - |
dc.subject.keywordPlus | NANOCRYSTALS | - |
dc.subject.keywordAuthor | Li-O-2 batteries | - |
dc.subject.keywordAuthor | Electrocatalysts | - |
dc.subject.keywordAuthor | Bimetallic nanocubes | - |
dc.subject.keywordAuthor | Oxygen reduction reactions | - |
dc.subject.keywordAuthor | Oxygen evolution reactions | - |