Ferroelectric Single-Crystal Gated Graphene/Hexagonal-BN/Ferroelectric Field-Effect Transistor
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Nahee Park | - |
dc.contributor.author | Kang, H. | - |
dc.contributor.author | Jeongmin Park | - |
dc.contributor.author | Yourack Lee | - |
dc.contributor.author | Yoojoo Yun | - |
dc.contributor.author | Lee, J.-H. | - |
dc.contributor.author | Lee, S.-G. | - |
dc.contributor.author | Young Hee Lee | - |
dc.contributor.author | Dongseok Suh | - |
dc.date.available | 2016-01-25T00:11:41Z | - |
dc.date.created | 2015-12-07 | - |
dc.date.issued | 2015-11 | - |
dc.identifier.issn | 1936-0851 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/2247 | - |
dc.description.abstract | The effect of a ferroelectric polarization field on the charge transport in a two-dimensional (2D) material was examined using a graphene monolayer on a hexagonal boron nitride (hBN) field-effect transistor (FET) fabricated using a ferroelectric single-crystal substrate, (1-x)[Pb(Mg1/3Nb2/3)O3]-x[PbTiO3] (PMN-PT). In this configuration, the intrinsic properties of graphene were preserved with the use of an hBN flake, and the influence of the polarization field from PMN-PT could be distinguished. During a wide-range gate-voltage (VG) sweep, a sharp inversion of the spontaneous polarization affected the graphene channel conductance asymmetrically as well as an antihysteretic behavior. Additionally, a transition from antihysteresis to normal ferroelectric hysteresis occurred, depending on the VG sweep range relative to the ferroelectric coercive field. We developed a model to interpret the complex coupling among antihysteresis, current saturation, and sudden conductance variation in relation with the ferroelectric switching and the polarization-assisted charge trapping, which can be generalized to explain the combination of 2D structured materials with ferroelectrics. © 2015 American Chemical Society | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | AMER CHEMICAL SOC | - |
dc.subject | antihysteresis | - |
dc.subject | ferroelectric memory | - |
dc.subject | ferroelectric single-crystal | - |
dc.subject | graphene transistor | - |
dc.subject | PMN-PT | - |
dc.title | Ferroelectric Single-Crystal Gated Graphene/Hexagonal-BN/Ferroelectric Field-Effect Transistor | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000365464800020 | - |
dc.identifier.scopusid | 2-s2.0-84948420072 | - |
dc.identifier.rimsid | 21737 | ko |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Nahee Park | - |
dc.contributor.affiliatedAuthor | Jeongmin Park | - |
dc.contributor.affiliatedAuthor | Yourack Lee | - |
dc.contributor.affiliatedAuthor | Yoojoo Yun | - |
dc.contributor.affiliatedAuthor | Young Hee Lee | - |
dc.contributor.affiliatedAuthor | Dongseok Suh | - |
dc.identifier.doi | 10.1021/acsnano.5b04339 | - |
dc.identifier.bibliographicCitation | ACS NANO, v.9, no.11, pp.10729 - 10736 | - |
dc.citation.title | ACS NANO | - |
dc.citation.volume | 9 | - |
dc.citation.number | 11 | - |
dc.citation.startPage | 10729 | - |
dc.citation.endPage | 10736 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 25 | - |
dc.description.scptc | 21 | - |
dc.embargo.liftdate | 9999-12-31 | - |
dc.embargo.terms | 9999-12-31 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | HYBRID STRUCTURES | - |
dc.subject.keywordPlus | TUNNEL-JUNCTIONS | - |
dc.subject.keywordPlus | GRAPHENE | - |
dc.subject.keywordPlus | ELECTRONICS | - |
dc.subject.keywordPlus | TRANSPORT | - |
dc.subject.keywordPlus | DEVICES | - |
dc.subject.keywordAuthor | graphene transistor | - |
dc.subject.keywordAuthor | ferroelectric single-crystal | - |
dc.subject.keywordAuthor | PMN-PT | - |
dc.subject.keywordAuthor | ferroelectric memory | - |
dc.subject.keywordAuthor | antihysteresis | - |