BROWSE

Related Scientist

cncr's photo.

cncr
나노물질및화학반응연구단
more info

ITEM VIEW & DOWNLOAD

Protein Structural Dynamics Revealed by Time-Resolved X-ray Solution Scattering

Cited 26 time in webofscience Cited 27 time in scopus
1,067 Viewed 166 Downloaded
Title
Protein Structural Dynamics Revealed by Time-Resolved X-ray Solution Scattering
Author(s)
Jong Goo Kim; Tae Wu Kim; Kim J.; Hyotcherl Ihee
Publication Date
2015-08
Journal
ACCOUNTS OF CHEMICAL RESEARCH, v.48, no.8, pp.2200 - 2208
Publisher
AMER CHEMICAL SOC
Abstract
Conspectus One of the most important questions in biological science is how a protein functions. When a protein performs its function, it undergoes regulated structural transitions. In this regard, to better understand the underlying principle of a protein function, it is desirable to monitor the dynamic evolution of the protein structure in real time. To probe fast and subtle motions of a protein in physiological conditions demands an experimental tool that is not only equipped with superb spatiotemporal resolution but also applicable to samples in solution phase. Time-resolved X-ray solution scattering (TRXSS), discussed in this Account, fits all of those requirements needed for probing the movements of proteins in aqueous solution. The technique utilizes a pump-probe scheme employing an optical pump pulse to initiate photoreactions of proteins and an X-ray probe pulse to monitor ensuing structural changes. The technical advances in ultrafast lasers and X-ray sources allow us to achieve superb temporal resolution down to femtoseconds. Because X-rays scatter off all atomic pairs in a protein, an X-ray scattering pattern provides information on the global structure of the protein with subangstrom spatial resolution. Importantly, TRXSS is readily applicable to aqueous solution samples of proteins with the aid of theoretical models and therefore is well suited for investigating structural dynamics of protein transitions in physiological conditions. In this Account, we demonstrate that TRXSS can be used to probe real-time structural dynamics of proteins in solution ranging from subtle helix movement to global conformational change. Specifically, we discuss the photoreactions of photoactive yellow protein (PYP) and homodimeric hemoglobin (HbI). For PYP, we revealed the kinetics of structural transitions among four transient intermediates comprising a photocycle and, by applying structural analysis based on ab initio shape reconstruction, showed that the signaling of PYP involves the protrusion of the N-terminus with significant increase of the overall protein size. For HbI, we elucidated the dynamics of complex allosteric transitions among transient intermediates. In particular, by applying structural refinement analysis based on rigid-body modeling, we found that the allosteric transition of HbI accompanies the rotation of quaternary structure and the contraction between two heme domains. By making use of the experimental and analysis methods presented in this Account, we envision that the TRXSS can be used to probe the structural dynamics of various proteins, allowing us to decipher the working mechanisms of their functions. Furthermore, when combined with femtosecond X-ray pulses generated from X-ray free electron lasers, TRXSS will gain access to ultrafast protein dynamics on sub-picosecond time scales. © 2015 American Chemical Society
URI
https://pr.ibs.re.kr/handle/8788114/1922
DOI
10.1021/acs.accounts.5b00198
ISSN
0001-4842
Appears in Collections:
Center for Nanomaterials and Chemical Reactions(나노물질 및 화학반응 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
201507_Protein Structural Dynamics Revealed by Time-Resolved X-ray Solution Scattering_Accounts of chemical research.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse